

Руководство для сопровождающих Debian

Osamu Aoki Лев Ламберов

9 января 2026 г.

Руководство для сопровождающих Debian
by Osamu Aoki Лев Ламберов

Copyright © 2014—2024 Осаму Аоки

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ”Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Данное руководство было создано на основе информации, содержащейся в следующих доку-
ментах:

• «Создание пакета Debian (руководство по debmake)», copyright © 1997 Джалдхар Виас

• «Практическое руководство нового сопровождающего по созданию пакетов Debian», copyright
© 1997 Уилл Лоу

• «Руководство начинающего разработчика Debian», copyright © 1998—2002 Джосип Родин,
2005—2017 Осаму Аоки, 2010 Крэйг Смолл, а также 2010 Рафаэль Херцог

Последняя версия данного руководства доступна:

• в «пакете debmake-doc» и

• на «веб-сайте Документации Debian».

i

https://tracker.debian.org/pkg/debmake-doc
https://www.debian.org/doc/devel-manuals

Оглавление

1 Предисловие 1

2 Обзор 3

3 Необходимые предварительные требования 5
3.1 Люди вокруг Debian . 5
3.2 Как принять участие . 5
3.3 Социальная динамика Debian . 6
3.4 Техническая памятка . 6
3.5 Документация Debian . 7
3.6 Справочные ресурсы . 8
3.7 Ситуация с архивом . 8
3.8 Подходы к участию . 9
3.9 Начинающий участник и сопровождающий . 10

4 Настройка инструментов 12
4.1 Email setup . 12
4.2 mc setup . 13
4.3 git setup . 13
4.4 quilt setup . 13
4.5 devscripts setup . 14
4.6 sbuild setup . 14
4.7 Persistent chroot setup . 16
4.8 gbp setup . 17
4.9 HTTP-прокси . 17
4.10 Частный репозиторий Debian . 17
4.11 Virtual machines . 17
4.12 Local network with virtual machines . 17

5 Simple packaging 18
5.1 Packaging tarball . 18
5.2 Общая картина . 18
5.3 Что такое debmake? . 19
5.4 Что такое debuild? . 20
5.5 Шаг 1: получение исходного кода основной ветки разработки 20
5.6 Step 2: Generate template files with debmake . 21
5.7 Шаг 3: изменение шаблонных файлов . 25
5.8 Step 4: Building package with debuild . 28
5.9 Step 3 (alternatives): Modification to the upstream source 30
5.10 Patch by «diff -u» approach . 31
5.11 Patch by dquilt approach . 32
5.12 Patch by «dpkg-source --auto-commit» approach . 33

6 Basics for packaging 36
6.1 Работа по созданию пакета . 36
6.2 debhelper package . 38
6.3 Имя пакета и версия . 39
6.4 Родной пакет Debian . 40
6.5 debian/rules file . 40
6.6 debian/control file . 41
6.7 debian/changelog file . 42
6.8 debian/copyright file . 43
6.9 debian/patches/* files . 43
6.10 debian/source/include-binaries file . 44

ii

ОГЛАВЛЕНИЕ

6.11 debian/watch file . 44
6.12 debian/upstream/signing-key.asc file . 44
6.13 debian/salsa-ci.yml file . 45
6.14 Other debian/* files . 45

7 Quality of packaging 51
7.1 Reformat debian/* files with wrap-and-sort . 51
7.2 Validate debian/* files with debputy . 51

8 Sanitization of the source 52
8.1 Fix with Files-Excluded . 52
8.2 Fix with «debian/rules clean» . 53
8.3 Fix with extend-diff-ignore . 53
8.4 Fix with tar-ignore . 53
8.5 Fix with «git clean -dfx» . 54

9 More on packaging 55
9.1 Package customization . 55
9.2 Customized debian/rules . 55
9.3 Variables for debian/rules . 56
9.4 Новый выпуск основной ветки . 56
9.5 Manage patch queue with dquilt . 57
9.6 Build commands . 57
9.7 Note on sbuild . 57
9.8 Special build cases . 58
9.9 Загрузите orig.tar.gz . 58
9.10 Пропущенные загрузки . 59
9.11 Bug reports . 59

10 Продвинутые темы работы над пакетом 61
10.1 Historical perspective . 61
10.2 Current trends . 62
10.3 Note on build system . 62
10.4 Непрерывная интеграция . 62
10.5 Предзагрузка . 63
10.6 Усиление безопасности компилятора . 63
10.7 Повторяемая сборка . 63
10.8 Переменные подстановки . 64
10.9 Пакет библиотеки . 64
10.10Multiarch . 65
10.11Split of a Debian binary package . 65
10.12Сценарии и примеры разделения пакета . 66
10.13Multiarch library path . 66
10.14Multiarch header file path . 67
10.15Multiarch *.pc file path . 67
10.16Библиотека символов . 67
10.17Library package name . 68
10.18Смена библиотек . 69
10.19Безопасная binNMU-загрузка . 70
10.20Отладочная информация . 70
10.21-dbgsym package . 70
10.22debconf . 71

11 Packaging with git 72
11.1 Salsa repository . 73
11.2 Salsa account setup . 73
11.3 Salsa CI service . 73
11.4 Branch names . 73
11.5 Patch unapplied Git repository . 74

iii

ОГЛАВЛЕНИЕ

11.6 Patch applied Git repository . 74
11.7 Note on gbp . 75
11.8 Note on dgit . 76
11.9 Patch by «gbp-pq» approach . 76
11.10Manage patch queue with gbp-pq . 76
11.11gbp import-dscs --debsnap . 77
11.12Note on dgit-maint-debrebase workflow . 77
11.13Quasi-native Debian packaging . 78

12 Полезные советы 79
12.1 Сборка с использованием кодировки UTF-8 . 79
12.2 Преобразование в кодировку UTF-8 . 79
12.3 Hints for Debugging . 79

13 Tool usages 82
13.1 debdiff . 82
13.2 dget . 82
13.3 mk-origtargz . 83
13.4 origtargz . 83
13.5 git deborig . 83
13.6 dpkg-source -b . 83
13.7 dpkg-source -x . 83
13.8 debc . 83
13.9 piuparts . 83
13.10bts . 84

14 Дополнительные примеры 85
14.1 Выборочное применение шаблонов . 85
14.2 Без Makefile (командная оболочка, интерфейс командной оболочки) 87
14.3 Makefile (командная оболочка, интерфейс командной оболочки) 93
14.4 pyproject.toml (Python3, CLI) . 95
14.5 Makefile (командная оболочка, графический интерфейс пользователя) 100
14.6 pyproject.toml (Python3, GUI) . 103
14.7 Makefile (single-binary package) . 106
14.8 Makefile.in + configure (single-binary package) . 108
14.9 Autotools (single-binary package) . 112
14.10CMake (single-binary package) . 115
14.11Autotools (multi-binary package) . 118
14.12CMake (multi-binary package) . 124
14.13Интернационализация . 129
14.14Детали . 134

15 Страница руководства debmake(1) 136
15.1 НАЗВАНИЕ . 136
15.2 СИНТАКСИС . 136
15.3 ОПИСАНИЕ . 136

15.3.1 необязательные аргументы: . 136
15.4 ПРИМЕРЫ . 139
15.5 ВСПОМОГАТЕЛЬНЫЕ ПАКЕТЫ . 140
15.6 ПРЕДОСТЕРЕЖЕНИЯ . 140
15.7 ОТЛАДКА . 140
15.8 АВТОР . 141
15.9 ЛИЦЕНЗИЯ . 141
15.10СМОТРИТЕ ТАКЖЕ . 141

iv

ОГЛАВЛЕНИЕ

16 debmake options 142
16.1 Shortcut options (-a, -i) . 142
16.2 debmake -b . 142
16.3 debmake -cc . 143
16.4 Snapshot upstream tarball (-d, -t) . 144
16.5 debmake -j . 144
16.6 debmake -k . 145
16.7 debmake -P . 145
16.8 debmake -T . 146
16.9 debmake -x . 146

v

Аннотация
Данное учебное руководство описывает сборку пакета Debian с помощью команды debmake и

предназначено для обычных пользователей Debian и будущих разработчиков.
Руководство сконцентрировано на современном стиле создания пакетов и содержит множе-

ство простых примеров:

• Создание пакета, содержащего сценарий командной оболочки POSIX

• Создание пакета, содержащего сценарий на языке Python3

• C и Makefile/Autotools/CMake

• Несколько двоичных пакетов с разделяемой библиотекой и т.д.

Данное «Руководство для сопровождающих Debian» может рассматриваться как замена «Ру-
ководства начинающего разработчика Debian».

Глава 1

Предисловие

If you are a somewhat experienced Debian user 1, you may have encountered the following situations:

• Желание установить некоторый пакет ПО, который пока отсутствует в архиве Debian.

• Желание обновить пакет Debian до более свежего выпуска из основной ветки разработки.

• Желание исправить ошибки в пакете Debian с помощью заплат.

If you want to create a Debian package to fulfill these needs and share your work with the community,
you are the target audience of this guide as a prospective Debian maintainer. 2 Welcome to the Debian
community.

Debian has many social and technical rules and conventions to follow, as it is a large volunteer
organization with a rich history. Debian has also developed an extensive array of packaging and archive
maintenance tools to build consistent sets of binary packages that address many technical objectives:

• packages have clearly specified package dependencies and patches and build correctly from scratch
in a clean build environment («Раздел 6.6», «Раздел 6.9», «Раздел 4.6»)

• packages build across many architectures («Раздел 9.3»)

• builds are reproducible («Раздел 10.7»)

• multiarch is supported («Раздел 10.10»)

• bootstrapping new architectures is possible («Раздел 10.5»)

• builds use specific compiler flags to harden security («Раздел 10.6»)

• packages are split optimally into multiple binary packages («Раздел 10.11»)

• library names and contents are managed to ensure smooth transitions on upgrades («Раздел 10.18»)

• installations use interactive prompts correctly (if at all) («Раздел 10.22»)

• continuous integration is used to ensure quality («Раздел 10.4»)

• …

These factors can be overwhelming for many new prospective Debian maintainers. This guide aims
to provide entry points to help them get started. It covers the following:

• Что следует знать до того, как быть вовлечённым в Debian в качестве будущего сопровож-
дающего.

• Как создать простой пакет Debian.

• Какие существуют виды правил для создания пакета Debian.

1You need to know a little about Unix programming, but you don’t need to be an expert. You can learn about basic Debian
system handling from the «Debian Reference». It also contains pointers for learning about Unix programming.

2If you’re not interested in sharing the Debian package, you can address your local needs by compiling and installing the fixed
upstream source package into /usr/local/.

1

https://www.debian.org/doc/user-manuals#quick-reference

ГЛАВА 1. ПРЕДИСЛОВИЕ

• Tips for making the Debian package with minimal effort.

• Examples of making Debian packages in typical scenarios.

The author recognized the limitations of updating the original «New Maintainers’ Guide» with the dh-
make package and decided to create an alternative tool with accompanying documentation to address
modern requirements such as multi-arch. This resulted in the debmake package, initially released as
version 4.0 in 2013. The current debmake version is 4.5.1. It comes with this updated «Guide for Debian
Maintainers» in the debmake-doc package (version: 1.23-2). (In 2016, dh-make was ported from Perl
to Python with updated features.)

Many chores and tips have been integrated into the debmake command allowing this guide to be
terse. This guide also offers many packaging examples for you to get started.

Предостережение

На создание и сопровождение пакета Debian хорошего качества уходят мно-
гие часы. Для выполнения этой задачи сопровождающий Debian должен
быть одновременно и технически компетентным, и усердным.

Some important topics are explained in detail. While some may seem irrelevant to you, please be
patient. Certain corner cases are omitted, and some topics are only covered through external references.
These are intentional choices to keep this guide simple and maintainable.

2

https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/manuals/debmake-doc/

Глава 2

Обзор

Создание пакета Debian из архива package-1.0.tar.gz, содержащего простой исходный код на язы-
ке C, соответствующий «Стандартам написания кода GNU» и «Стандарту иерархии файловой
системы», может быть выполнено с помощью команды debmake, как показано ниже.

$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake
... Make manual adjustments of generated configuration files

$ debuild

Если будет пропущена ручная правка созданных настроечных файлов, то в созданном дво-
ичном пакете будет отсутствовать осмысленное описание, но он будет вполне работоспособным
при использовании команды dpkg для его локального развёртывания.

Предостережение

The debmake command only provides decent template files. These template
files must be manually adjusted to their perfection to comply with the strict quality
requirements of the Debian archive, if the generated package is intended for
general consumption.

If you are new to Debian packaging, focus on understanding the overall process rather than worrying
about the details.

If you are familiar with Debian packaging, you’ll notice that debmake is similar to the dh_make
command. This is because debmake is designed to replace the functionality historically provided by
dh_make. 1

Команда debmake имеет следующие возможности:

• современный стиль создания пакетов

– debian/copyright: «DEP-5» compliant
– debian/control: substvar support, multiarch support, multi binary packages, …
– debian/rules: dh syntax, compiler hardening options, …

• гибкость

– many options (see «Раздел 16.2», «Глава 15», and «Глава 16»)

• разумные действия по умолчанию

– выполнение без остановок с чистыми результатами
– создание мультиархитектурного пакета, если явно не указана опция -m.

1Before dh_make, the deb-make command was popular. The current debmake package starts its version from 4.0 to avoid
version conflicts with the obsolete debmake package, which provided the «deb-make» command.

3

https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://dep-team.pages.debian.net/deps/dep5/

ГЛАВА 2. ОБЗОР

– generate the non-native Debian package with the Debian source format «3.0 (quilt)», unless
the -n option is explicitly specified.

• дополнительные обслуживающие программы

– verification of the debian/copyright file against the current source (see «Раздел 16.6»)

The debmake command delegates most of the heavy lifting to its back-end packages: debhelper,
dpkg-dev, devscripts, sbuild, schroot, etc.

Подсказка

Ensure that you properly quote the arguments of the -b, -f, -l, and -w options to
protect them from shell interference.

Подсказка

Неродной пакет Debian — обычный пакет Debian.

Подсказка

Подробный журнал всех примеров сборки пакетов из данной документации
можно получить, следуя инструкциям из «Раздел 14.14».

Замечание

The generation of the debian/copyright file, and the outputs from the -c (see
«Раздел 16.3») and -k (see «Раздел 16.6») options involve heuristic operations
on the copyright and license information. They may produce some erroneous
results.

4

Глава 3

Необходимые предварительные
требования

Here are the prerequisites you need to understand before getting involved with Debian.

3.1 Люди вокруг Debian
Существует несколько типов людей, взаимодействующих с Debian в рамках разный ролей:

• Автор основной ветки разработки: тот, кто создал исходную программу.

• Сопровождающий основной ветки разработки: тот, кто в настоящее время сопровождает
программу.

• Сопровождающий: тот, кто создаёт пакет Debian с программой.

• Поручитель: тот, кто помогает сопровождающим загружать пакеты в официальный архив
пакетов Debian (после проверки содержимого пакетов).

• Ментор: тот, кто помогает начинающим сопровождающим создавать пакеты и проч.

• разработчик Debian (DD): член проекта Debian с полными правами на загрузку в официаль-
ный архив пакетов Debian.

• сопровождающий Debian (DM): тот, кто имеет ограниченные права на загрузку в офици-
альный архив пакетов Debian.

Please note that you can’t become an official Debian Developer (DD) overnight, as it requires more
than just technical skills. Don’t be discouraged by this. If your work is useful to others, you can still upload
your package either as a maintainer through a sponsor or as a Debian Maintainer.

Please note that you don’t need to create new packages to become an official Debian Developer.
Contributing to existing packages can also provide a path to becoming an official Debian Developer.
There are many packages waiting for good maintainers (see «”ˋРаздел 3.8»ˋ”).

3.2 Как принять участие
Чтобы узнать, как принять участие в Debian, обратите внимание не следующее:

• «Как вы можете помочь Debian?» (официальный источник)

• «The Debian GNU/Linux FAQ, Chapter 13 - Contributing to the Debian Project» (semi-official)

• «Debian Wiki, HelpDebian» (дополнительный источник)

• «Сайт новых участников Debian» (официальный источник)

• «ЧаВО для менторов Debian» (дополнительный источник)

5

https://www.debian.org/intro/help
https://www.debian.org/doc/manuals/debian-faq/contributing
https://wiki.debian.org/HelpDebian
https://nm.debian.org/
https://wiki.debian.org/DebianMentorsFaq

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.3. СОЦИАЛЬНАЯ ДИНАМИКА DEBIAN

3.3 Социальная динамика Debian
Для подготовки к взаимодействию с Debian следует понять социальную динамику Debian, которая
состоит в следующем:

• We are all volunteers.

– You can’t impose tasks on others.
– You should be self-motivated to do things.

• Движущей силой является дружеское сотрудничество.

– Ваше участие не должно чрезмерно досаждать остальным.
– Ваш вклад ценен только в том случае, если остальные вам за него признательны.

• Debian is not a school where you get automatic attention from teachers.

– You should be able to learn many things independently.
– Attention from other volunteers is a scarce resource.

• Debian постоянно улучшается.

– От вас ожидается, что вы будете создавать пакеты высокого качества.
– Вы сами должны адаптироваться к изменениям.

Поскольку в оставшейся части настоящего руководства мы концентрируемся исключительно
на технических аспектах создания пакетов, постольку чтобы понять социальную динамику Debian,
рекомендуем обратиться к следующей документации:

• «Debian: 17 years of Free Software, ”do-ocracy”, and democracy» (Introductory slides by the ex-
DPL)

3.4 Техническая памятка
Here are some technical reminders to help other maintainers work on your package easily and effectively,
maximizing the output of Debian as a whole.

• Упростите отладку вашего пакета.

– Делайте ваш пакет простым.
– Не усложняйте ваш пакет.

• Хорошо документируйте ваш пакет.

– Используйте читаемый стиль для исходного кода.
– Оставляйте в коде комментарии.
– Форматируйте свой код везде одинаковым образом.
– Сопровождайте git-репозиторий 1 пакета.

Замечание

Отладка ПО чаще требует большего количества времени, чем написание
изначально работающего ПО.

It is unwise to run your base system under the unstable suite, even for development purposes.

1Подавляющее большинство сопровождающих Debian используют git, а не другие системы управления версиями,
такие как hg, bzr и т.д.

6

http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.5. ДОКУМЕНТАЦИЯ DEBIAN

• Creation and verification of binary deb packages should use a minimal unstable chroot as described
in «Раздел 4.6».

• Basic interactive package development activities should use an unstable chroot as described in
«Раздел 4.7».

Замечание

Advanced package development activities, such as testing full Desktop systems,
network daemons, and system installer packages, should use the unstable suite
running under «virtualization».

3.5 Документация Debian
Please make yourself ready to read the pertinent part of the latest Debian documentation to generate
perfect Debian packages:

• «Debian Policy Manual»

– The official «must follow» rules (https://www.debian.org/doc/devel-manuals#policy)

• «Debian Developer’s Reference»

– The official «best practice» document (https://www.debian.org/doc/devel-manuals#devref)

• «Guide for Debian Maintainers» — this guide

– A «tutorial reference» document (https://www.debian.org/doc/devel-manuals#debmake-doc)

All these documents are published on https://www.debian.org using the unstable suite versions of
corresponding Debian packages. If you wish to have local access to all these documents from your base
system, please consider using techniques such as «apt-pinning» and «chroot».

Если данное руководство противоречит официальной документации Debian, то верной являет-
ся последняя. В таком случае отправьте сообщение об ошибке в пакете debmake-doc с помощью
команды reportbug.

Также существует следующая альтернативная вводная документация, которую вы можете про-
читать вместе с настоящим руководством:

• «Debian Packaging Tutorial»

– https://www.debian.org/doc/devel-manuals#packaging-tutorial
– https://packages.qa.debian.org/p/packaging-tutorial.html

• «Ubuntu Packaging Guide» (Ubuntu is Debian based.)

– http://packaging.ubuntu.com/html/

• «Debian New Maintainers’ Guide» (predecessor of this tutorial, deprecated)

– https://www.debian.org/doc/devel-manuals#maint-guide
– https://packages.qa.debian.org/m/maint-guide.html

Подсказка

When reading these, you may consider using the debmake command in place
of the dh_make command.

7

https://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_multiple_desktop_systems
https://www.debian.org/doc/devel-manuals#policy
https://www.debian.org/doc/devel-manuals#devref
https://www.debian.org/doc/devel-manuals#debmake-doc
https://www.debian.org
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_tweaking_candidate_version
https://en.wikipedia.org/wiki/Chroot
https://www.debian.org/doc/devel-manuals#packaging-tutorial
https://packages.qa.debian.org/p/packaging-tutorial.html
http://packaging.ubuntu.com/html/
https://www.debian.org/doc/devel-manuals#maint-guide
https://packages.qa.debian.org/m/maint-guide.html

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.6. СПРАВОЧНЫЕ РЕСУРСЫ

3.6 Справочные ресурсы
Before deciding to ask your question in a public forum, please do your part by reading the relevant
documentation:

• Информацию о пакете, доступную с помощью команд aptitude, apt-cache и dpkg.

• Файлы в каталоге /usr/share/doc/пакет для всех релевантных пакетов.

• Содержимое man команда для всех релевантных команд.

• Содержимое info команда для всех релевантных команд.

• Содержимое «архива списка рассылки debian-mentors@lists.debian.org».

• Содержимое «архива списка рассылки debian-devel@lists.debian.org».

You can find your desired information effectively by using a well-formed search string such as ”keyword
site:lists.debian.org” to limit the search domain of the web search engine.

Creating a small test package is a good way to learn the details of packaging. Inspecting existing
well-maintained packages is the best way to learn how other people make packages.

Если у вас всё ещё остались вопросы по поводу создания пакетов, вы можете задать их в
следующих списках рассылки:

• debian-mentors@lists.debian.org mailing list. (This mailing list is for the novice.)

• debian-devel@lists.debian.org mailing list. (This mailing list is for the expert.)

• IRC such as #debian-mentors.

• Teams focusing on a specific set of packages. (Full list at https://wiki.debian.org/Teams)

• Списки рассылки, в которых принято общаться на отличных от английского языках.

– «debian-devel-{french,italian,portuguese,spanish}@lists.debian.org»
– «debian-chinese-gb@lists.debian.org» (This mailing list is for general (Simplified) Chinese

discussion.)
– «debian-devel@debian.or.jp»

More experienced Debian developers will gladly help you if you ask properly after making the required
efforts.

Предостережение

Debian development is a moving target. Some information found on the web may
be outdated, incorrect, or non-applicable. Please use such information carefully.

3.7 Ситуация с архивом
Пожалуйста, поймите ситуацию с архивом Debian.

• В Debian уже имеются пакеты для большинства видов программ.

• Число пакетов в архиве Debian уже в несколько раз превышает число активных сопровож-
дающих.

• К сожалению, некоторые пакеты нуждаются в должном внимании сопровождающих.

8

https://lists.debian.org/debian-mentors/
https://lists.debian.org/debian-devel/
mailto:debian-mentors@lists.debian.org
mailto:debian-devel@lists.debian.org
https://www.debian.org/support#irc
https://wiki.debian.org/Teams
https://lists.debian.org/devel.html
https://lists.debian.org/debian-chinese-gb/
http://www.debian.or.jp/community/ml/openml.html#develML

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.8. ПОДХОДЫ К УЧАСТИЮ

Поэтому, участие в работе над уже добавленными в архив пакетами более чем ценно и жела-
тельно (и гораздо больше вероятность получить поручительство для загрузки) со стороны других
сопровождающих.

Подсказка

The wnpp-alert command from the devscripts package can check for installed
packages that are up for adoption or orphaned.

Подсказка

The how-can-i-help package can show opportunities for contributing to Debian
based on packages installed locally.

3.8 Подходы к участию
Ниже приводится псевдокод на питоноподобном языке, описывающий в программном видевоз-
можности вашего участия в Debian:

if exist_in_debian(program):
if is_team_maintained(program):
join_team(program)

if is_orphaned(program): # maintainer: Debian QA Group
adopt_it(program)

elif is_RFA(program): # Request for Adoption
adopt_it(program)

else:
if need_help(program):
contact_maintainer(program)
triaging_bugs(program)
preparing_QA_or_NMU_uploads(program)

else:
leave_it(program)

else: # new packages
if not is_good_program(program):
give_up_packaging(program)

elif not is_distributable(program):
give_up_packaging(program)

else: # worth packaging
if is_ITPed_by_others(program):
if need_help(program):
contact_ITPer_for_collaboration(program)

else:
leave_it_to_ITPer(program)

else: # really new
if is_applicable_team(program):
join_team(program)

if is_DFSG(program) and is_DFSG(dependency(program)):
file_ITP(program, area="main") # This is Debian

elif is_DFSG(program):
file_ITP(program, area="contrib") # This is not Debian

else: # non-DFSG
file_ITP(program, area="non-free") # This is not Debian

package_it_and_close_ITP(program)

Где:

9

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.9. НАЧИНАЮЩИЙ УЧАСТНИК И …

• Для функций exist_in_debian() и is_team_maintained() нужно проверить следующее:

– команду aptitude
– веб-страницу «пакеты Debian»
– Debian wiki «Teams» page

• Для функций is_orphaned(), is_RFA() и is_ITPed_by_others() нужно проверить следующее:

– вывод команды wnpp-alert
– «пакеты требующие доработки и будущие»
– «журналы отчётов об ошибках Debian: ошибки в псевдопакете wnpp в нестабильном

выпуске»
– «пакеты Debian, которым требуется внимание и забота»
– «ошибки в пакете wnpp по меткам debtag»

• Для функции is_good_program() нужно проверить следующее:

– программа должна быть полезна
– программа не усложняет поддержку безопасности и сопровождение системы Debian
– программа хорошо документирована, а её код понятен (то есть, не обфусцирован)
– авторы программы согласны с созданием пакета и дружественно относятся к Debian 2

• Для функций is_it_DFSG() и is_its_dependency_DFSG() нужно проверить следующее:

– «Критерии Debian по определению Свободного ПО» (DFSG).

• Для функции is_it_distributable() нужно проверить следующее:

– ПО должно иметь лицензию и лицензия должна разрешать распространение ПО.

You either need to file an ITP or adopt a package to start working on it. See the «Debian Developer’s
Reference»:

• «5.1. Новые пакеты».

• «5.9. Перемещение, удаление, переименование, придание статуса осиротевшего, усынов-
ление и повторное введение пакетов».

3.9 Начинающий участник и сопровождающий
Начинающий участник и сопровождающий могут недоумевать по поводу того, что же следует изу-
чить, чтобы начать участвовать в Debian. Ниже приводятся некоторые предложения в зависимости
от того, чем вы хотите заниматься.

• Создание пакетов

– Основы командной оболочки POSIX и инструмента make.
– Некоторое зачаточное знание Perl и Python.

• Перевод

– Основы работы системы перевода PO.

• Документация

– Basics of text markups (XML, ReST, Wiki, …).

Начинающий участник и сопровождающий могут недоумевать по поводу того, где же начать
участвовать в Debian. Ниже приводятся некоторые предложения в зависимости от ваших навыков.

2Это не является абсолютным требованием. Тем не менее, враждебные разработчики основной ветки могут стать тем,
что будет опустошать ресурсы всех нас. С дружественными разработчиками можно консультироваться в решении любых
проблем с программой.

10

https://www.debian.org/distrib/packages
https://wiki.debian.org/Teams
https://www.debian.org/devel/wnpp/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://wnpp.debian.net/
https://wnpp-by-tags.debian.net/
https://www.debian.org/social_contract#guidelines
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#newpackage
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.9. НАЧИНАЮЩИЙ УЧАСТНИК И …

• Навыки работы с командной оболочкой POSIX, Perl и Python:

– Отправляйте заплаты для программы установки Debian.
– Send patches to the Debian packaging helper scripts such as devscripts, sbuild, schroot,

etc. mentioned in this document.

• Навыки C и C++:

– Отправляйте заплаты для пакетов, имеющих приоритеты required и important.

• Навыки работы с отличными от английского языками:

– Отправляйте заплаты для PO-файлов программы установки Debian.
– Отправляйте заплаты для PO-файлов пакетов, имеющих приоритеты required и important.

• Навыки написания документации:

– Обновляйте содержание «Debian Wiki».
– Отправляйте заплаты к существующей «документации Debian».

Эта деятельность даст вам возможность познакомиться с другими участниками Debian и улуч-
шить вашу репутацию.

Начинающему сопровождающему следует избегать работу над пакетами, содержащими про-
граммы с высокими рисками в плане безопасности:

• программы, имеющие флаги доступа setuid или setgid

• службы

• программы, устанавливаемые в каталоги /sbin/ или /usr/sbin/

Когда вы получите больше опыта в работе над пакетами, вы сможете создавать пакеты и с
такими программами.

11

https://wiki.debian.org/
https://www.debian.org/doc/

Глава 4

Настройка инструментов

В сборочном окружении должен быть установлен пакет build-essential.
The devscripts package should be installed in the development environment of the maintainer.
It is a good idea to install and set up all of the popular set of packages mentioned in this chapter.

These enable us to share the common baseline working environment, although these are not necessarily
absolute requirements.

Please also consider to install the tools mentioned in the «Overview of Debian Maintainer Tools» in
the «Debian Developer’s Reference», as needed.

Предостережение

Настройки инструментов, представленные ниже, являются лишь примером
и могут быть неактуальны при использовании самых свежих пакетов. Раз-
работка Debian является движущейся целью. Обязательно прочтите соот-
ветствующую документацию и при необходимости обновите настройки.

4.1 Email setup
Различные инструменты сопровождения Debian назначают ваш адрес электронной почты и ваше
имя из переменных окружения $DEBEMAIL и $DEBFULLNAME.

Let’s set these environment variables by adding the following lines to ~/.bashrc 1.
Добавьте в файл ~/.bashrc

DEBEMAIL="osamu@debian.org"
DEBFULLNAME="Osamu Aoki"
export DEBEMAIL DEBFULLNAME

Замечание

The above is for the author of this manual. The configuration and operation
examples presented in this manual use these email address and name settings.
You must use your email address and name for your system.

1Предполагается, что в качестве интерактивной командной оболочки с регистрацией вы используете Bash. Если вы
используете какую-то другую командную оболочку, например, Zsh, то вместо ~/.bashrc необходимо изменить соответству-
ющие файлы настройки.

12

https://www.debian.org/doc/manuals/developers-reference/tools.html

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.2. MC SETUP

4.2 mc setup
Команда mc предлагает вам простой способ работы с файлами. Она может открывать двоич-
ные deb-файлы для проверки их содержимого по простому нажатию клавиши «Ввод» при выборе
соответствующего двоичного deb-файла. В качестве движка эта программа использует команду
dpkg-deb. Настроим её на поддержку простой функции chdir следующим образом.

Добавьте в файл ~/.bashrc

mc related
if [-f /usr/lib/mc/mc.sh]; then
. /usr/lib/mc/mc.sh

fi

4.3 git setup
На сегодняшний день команда git является необходимым инструментом для работы с деревом
исходного кода с историей.

Глобальные пользовательские настройки для команды git, такие как ваши имя и адрес элек-
тронной почты, можно установить в файле ~/.gitconfig следующим образом.

$ git config --global user.name "Osamu Aoki"
$ git config --global user.email osamu@debian.org

Если вы привыкли использовать команды CVS или Subversion, то можете установить несколько
указанных ниже псевдонимов команд.

$ git config --global alias.ci "commit -a"
$ git config --global alias.co checkout

Проверить ваши глобальные настройки можно следующим образом.

$ git config --global --list

Подсказка

Для эффективной работы с историей git-репозитория необходимо использо-
вать какой-нибудь инструмент с графическим интерфейсом пользователя,
например, gitk или gitg.

4.4 quilt setup
Команда quilt предлагает простой метод записи изменений. Для работы с пакетами Debian сле-
дует выполнить настройку так, чтобы изменения записывались в каталог debian/patches/ вместо
каталога patches/ по умолчанию.

Чтобы не менять поведение самой команды quilt, создадим псевдоним dquilt для работы с
пакетами Debian, добавив следующие строки в файл ~/.bashrc. Вторая строка предоставляет ко-
манде dquilt ту же функциональность автодополнения, что и у команды quilt.

Добавьте в файл ~/.bashrc

alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
. /usr/share/bash-completion/completions/quilt
complete -F _quilt_completion $_quilt_complete_opt dquilt

Теперь создадим файл ~/.quiltrc-dpkg со следующим содержимым.

13

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.5. DEVSCRIPTS SETUP

d=.
while [! -d $d/debian -a `readlink -e $d` != /];

do d=$d/..; done
if [-d $d/debian] && [-z $QUILT_PATCHES]; then

if in Debian packaging tree with unset $QUILT_PATCHES
QUILT_PATCHES="debian/patches"
QUILT_PATCH_OPTS="--reject-format=unified"
QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:"
QUILT_COLORS="${QUILT_COLORS}diff_ctx=35:diff_cctx=33"
if ! [-d $d/debian/patches]; then mkdir $d/debian/patches; fi

fi

See quilt(1) and «How To Survive With Many Patches or Introduction to Quilt (quilt.html)» on how
to use the quilt command.

Для примеров использования см. «Раздел 5.9».
Note that «gbp pq» is able to consume existing debian/patches, automate updating and modifying

the patches, and export them back into debian/patches, all without using quilt nor the need to learn or
configure quilt.

4.5 devscripts setup
Для подписывания пакета Debian вашим закрытым GPG-ключом используется команда debsign,
входящая в состав пакета devscripts.

Команда debuild, входящая в состав пакета devscripts, собирает двоичный пакет и проверяет
его с помощью команды lintian. Полезно иметь более подробный вывод команды lintian.

Вы можете настроить эти команды в файле ~/.devscripts следующим образом.

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-i -I -us -uc"
DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"
DEBSIGN_KEYID="Your_GPG_keyID"

The -i and -I options in DEBUILD_DPKG_BUILDPACKAGE_OPTS for the dpkg-source command
help rebuilding of Debian packages without extraneous contents (see «Глава 8»).

В настоящее время хорошо иметь RSA-ключ длины 4096 бит, см. «Создание нового GPG-
ключа».

4.6 sbuild setup
The sbuild package provides a clean room («chroot») build environment. It offers this efficiently with the
help of schroot using the bind-mount feature of the modern Linux kernel.

Since it is the same build environment as the Debian’s buildd infrastructure, it is always up to date
and comes full of useful features.

It can be customized to offer following features:

• The schroot package to boost the chroot creation speed.

• Пакет lintian предназначен для обнаружения ошибок в пакете.

• The piuparts package to find bugs in the package.

• The autopkgtest package to find bugs in the package.

• Пакет ccache предназначен для увеличения скорости работы gcc (необязательно).

• Пакет libeatmydata1 предназначен для увеличения скорости работы dpkg (необязательно).

• Параллельный запуск make позволяет увеличить скорость сборки (необязательно).

14

file:///usr/share/doc/quilt/quilt.html
https://manpages.debian.org/unstable/git-buildpackage/gbp-pq.1.en.html
https://keyring.debian.org/creating-key.html
https://keyring.debian.org/creating-key.html
https://en.wikipedia.org/wiki/Chroot
https://buildd.debian.org/

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.6. SBUILD SETUP

Let’s set up sbuild environment 2:

$ sudo apt install sbuild piuparts autopkgtest lintian
$ sudo apt install sbuild-debian-developer-setup
$ sudo sbuild-debian-developer-setup -s unstable

Let’s update your group membership to include sbuild and verify it:

$ newgrp -
$ id
uid=1000(<yourname>) gid=1000(<yourname>) groups=...,132(sbuild)

Here, «reboot of system» or «kill -TERM -1» can be used instead to update your group membership
3 .

Let’s create the configuration file ~/.sbuildrc in line with recent Debian practice of «source-only-
upload» as:

cat >~/.sbuildrc << 'EOF'
##
PACKAGE BUILD RELATED (source-only-upload as default)
##
-d
$distribution = 'unstable';
-A
$build_arch_all = 1;
-s
$build_source = 1;
--source-only-changes
$source_only_changes = 1;
-v
$verbose = 1;

##
POST-BUILD RELATED (turn off functionality by setting variables to 0)
##
$run_lintian = 1;
$lintian_opts = ['-i', '-I'];
$run_piuparts = 1;
$piuparts_opts = ['--schroot', 'unstable-amd64-sbuild'];
$run_autopkgtest = 1;
$autopkgtest_root_args = '';
$autopkgtest_opts = ['--', 'schroot', '%r-%a-sbuild'];

##
PERL MAGIC
##
1;
EOF

Замечание

There are some exceptional cases such as NEW uploads, uploads with NEW
binary packages, and security uploads where you can’t do source-only-upload
but are required to upload with binary packages. The above configuration needs
to be adjusted for those exceptional cases.

Following document assumes that sbuild is configured this way.
Edit this to your needs. Post-build tests can be turned on and off by assigning 1 or 0 to the corresponding

variables,

2Be careful since some older HOWTOs may use different chroot setups.
3Simply «logout and login under some modern GUI Desktop environment» may not update your group membership.

15

https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.7. PERSISTENT CHROOT SETUP

Внимание

Необязательные настройки могут вызывать отрицательные последствия.
Отключите их в случае сомнения.

Замечание

Параллельный запуск make может быть неудачным для некоторых уже име-
ющихся пакетов и может сделать журнал сборки сложным для прочтения.

Подсказка

Many sbuild related hints are available at «Раздел 9.7» and
«https://wiki.debian.org/sbuild» .

4.7 Persistent chroot setup

Замечание

Use of independent copied chroot filesystem prevents contaminating the source
chroot used by sbuild.

For building new experimental packages or for debugging buggy packages, let’s setup dedicated
persistent chroot «source:unstable-amd64-desktop» by:

$ sudo cp -a /srv/chroot/unstable-amd64-sbuild /srv/chroot/unstable-amd64-desktop
$ sudo tee /etc/schroot/chroot.d/unstable-amd64-desktop-XXXXXX << EOF
[unstable-desktop]
description=Debian sid/amd64 persistent chroot
groups=root,sbuild
root-groups=root,sbuild
profile=desktop
type=directory
directory=/srv/chroot/unstable-amd64-desktop
union-type=overlay
EOF

Here, desktop profile is used instead of sbuild profile. Please make sure to adjust /etc/schroot/desktop/fstab
to make package source accessible from inside of the chroot.

You can log into this chroot «source:unstable-amd64-desktop» by:

$ sudo schroot -c source:unstable-amd64-desktop

16

https://wiki.debian.org/sbuild

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.8. GBP SETUP

4.8 gbp setup
The git-buildpackage package offers the gbp(1) command. Its user configuration file is ~/.gbp.conf.

Configuration file for "gbp <command>"

[DEFAULT]
the default build command:
builder = sbuild
use pristine-tar:
pristine-tar = True
Use color when on a terminal, alternatives: on/true, off/false or auto
color = auto

4.9 HTTP-прокси
Чтобы сохранить пропускную способность при обращении к репозиторию пакетов Debian вам сле-
дует настроить локальный кэширующий HTTP-прокси. Имеется несколько вариантов:

• Специализированный кэширующий HTTP-прокси, использующий пакет apt-cacher-ng.

• Generic HTTP caching proxy (squid package) configured by squid-deb-proxy package

In order to use this HTTP proxy without manual configuration adjustment, it’s a good idea to install
either auto-apt-proxy or squid-deb-proxy-client package to everywhere.

4.10 Частный репозиторий Debian
Вы можете настроить собственный репозиторий пакетов Debian с помощью пакета reprepro.

4.11 Virtual machines
For testing GUI application, it is a good idea to have virtual machines. Install virt-manager and qemu-
kvm packages.

Use of chroot and virtual machines allows us not to update the whole host PC to the latest unstable
suite.

4.12 Local network with virtual machines
In order to access virtual machines easily over the local network, setting up multicast DNS service
discovery infrastructure by installing avahi-utils is a good idea.

For all running virtual machines and the host PC, we can use each host name appended with .local
for SSH to access each other.

17

Глава 5

Simple packaging

There is an old Latin saying: «Longum iter est per praecepta, breve et efficax per exempla» («It’s a
long way by the rules, but short and efficient with examples»).

5.1 Packaging tarball
Ниже приведён пример создания простого пакета Debian из простого исходного кода на языке C,
использующего в качестве системы сборки Makefile.

Допустим, имя tar-архива из основной ветки разработки будет debhello-0.0.tar.gz.
Предполагается, что этот тип исходного кода будет установлен как несистемный файл:
Basics for the install from the upstream tarball

$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0
$ make
$ make install

Debian packaging requires changing this «make install» process to install files to the target system
image location instead of the normal location under /usr/local.

Замечание

Примеры создания пакета Debian из других более сложных систем сборки
описаны в «Глава 14».

5.2 Общая картина
Общая картина сборки простого неродного пакета Debian из tar-архива основной ветки разработки
debhello-0.0.tar.gz может быть представлена следующим образом:

• Сопровождающий получает tar-архив debhello-0.0.tar.gz из основной ветки разработки и рас-
паковывает его содержимое в каталог debhello-0.0.

• Команда debmake добавляет шаблонные файлы исключительно в каталог debian.

– Создаётся символьная ссылка debhello_0.0.orig.tar.gz, указывающая на файл debhello-
0.0.tar.gz.

– Сопровождающий настраивает шаблонные файлы.

• Команда debuild собирает двоичный пакет из подготовленного дерева исходного кода.

– Создаётся файл debhello-0.0-1.debian.tar.xz, содержащий каталог debian.

18

ГЛАВА 5. SIMPLE PACKAGING 5.3. ЧТО ТАКОЕ DEBMAKE?

Общая картина сборки пакета
$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0
$ debmake
... manual customization

$ debuild
...

Подсказка

The debuild command in this and following examples may be substituted by
equivalent commands such as the sbuild command.

Подсказка

Если доступен tar-архив основной ветки разработки в формате .tar.xz, то
используйте его вместо архивов в формате .tar.gz или .tar.bz2. Утилита xz
предлагает более высокую степень сжатия, чем gzip и bzip2.

5.3 Что такое debmake?

Замечание

Actual packaging activities are often performed manually without using debmake
while referencing only existing similar packages and «Debian Policy Manual».

The debmake command is the helper script for the Debian packaging. («Глава 15»)

• It creates good template files for the Debian packages.

• Она всегда устанавливает большинство очевидных опций в разумные значения.

• Создаёт tar-архив основной ветки разработки и необходимую символьную ссылку в случае
их отсутствия.

• Не переписывает существующие файлы настройки в каталоге debian/.

• Поддерживает мультиархитектурные пакеты.

• It provides short extracted license texts as debian/copyright in decent accuracy to help license
review.

Эти возможности делают работу с пакетами Debian с помощью debmake простой и современ-
ной.

In retrospective, I created debmake to simplify this documentation. I consider debmake to be more-
or-less a demonstration session generator for tutorial purpose.

The debmake command isn’t the only helper script to make a Debian package. If you are interested
alternative packaging helper tools, please see:

• Debian wiki: «AutomaticPackagingTools» — Extensive comparison of packaging helper scripts

• Debian wiki: «CopyrightReviewTools» — Extensive comparison of copyright review helper scripts

19

https://www.debian.org/doc/debian-policy/
https://wiki.debian.org/AutomaticPackagingTools
https://wiki.debian.org/CopyrightReviewTools

ГЛАВА 5. SIMPLE PACKAGING 5.4. ЧТО ТАКОЕ DEBUILD?

5.4 Что такое debuild?
Ниже приведён обзор команд, похожих на команду debuild.

• Файл debian/rules определяет то, как будет собран двоичный пакет Debian.

• dpkg-buildpackage — официальная команда для сборки двоичного пакета Debian. Для обыч-
ной двоичной сборки она, грубо говоря, выполняет следующую последовательность команд:

– «dpkg-source --before-build» (apply Debian patches, unless they are already applied)
– «fakeroot debian/rules clean»
– «dpkg-source --build» (build the Debian source package)
– «fakeroot debian/rules build»
– «fakeroot debian/rules binary»
– «dpkg-genbuildinfo» (generate a *.buildinfo file)
– «dpkg-genchanges» (generate a *.changes file)
– «fakeroot debian/rules clean»
– «dpkg-source --after-build» (unapply Debian patches, if they are applied during --before-

build)
– «debsign» (sign the *.dsc and *.changes files)

* Если вы следовали инструкциям (см. «Раздел 4.5») и передали программе сборки
опции -us и -uc, то данный шаг будет пропущен, а для подписи требуется вручную
запустить команду debsign.

• Команда debuild представляет собой обёртку для команды dpkg-buildpackage, которая со-
бирает двоичный пакет Debian в окружении с подходящими значениями переменных окру-
жения.

• The sbuild command is a wrapper script to build the Debian binary package under the proper
chroot environment with the proper environment variables.

Замечание

Подробную информацию см. в dpkg-buildpackage(1).

5.5 Шаг 1: получение исходного кода основной ветки разра-
ботки

Получим исходный код основной ветки разработки.
Скачаем файл debhello-0.0.tar.gz

$ wget http://www.example.org/download/debhello-0.0.tar.gz
...
$ tar -xzmf debhello-0.0.tar.gz
$ tree
.
+-- debhello-0.0
| +-- Makefile
| +-- README.md
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.gz

3 directories, 4 files

20

ГЛАВА 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

В нём содержится исходный код на языке C, hello.c, довольно простой.
hello.c

$ cat debhello-0.0/src/hello.c
#include <stdio.h>
int
main()
{

printf("Hello, world!\n");
return 0;

}

Итак, Makefile соответствует «Стандартам написания кода GNU» и «Стандарту иерархии фай-
ловой системы». А именно:

• сборку двоичных файлов с учётом значений $(CPPFLAGS), $(CFLAGS), $(LDFLAGS) и т. д.

• установку файлов с учётом $(DESTDIR) в качестве целевого системного образа

• установку файлов с $(prefix), который можно изменить на /usr

Makefile

$ cat debhello-0.0/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
@echo "CFLAGS=$(CFLAGS)" | \

fold -s -w 70 | \
sed -e 's/^/# /'

$(CC) $(CPPFLAGS) $(CFLAGS) $(LDCFLAGS) -o $@ $^

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello

.PHONY: all install clean distclean uninstall

Замечание

В приведённом ниже примере применение команды echo к $(CFLAGS) ис-
пользуется для проверки настройки сборочных флагов.

5.6 Step 2: Generate template files with debmake
Вывод команды debmake довольно подробен, в нём объяснены выполняемые действия, напри-
мер, как это указано ниже.

The output from the debmake command

21

https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

ГЛАВА 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

$ cd /path/to/debhello-0.0
$ debmake -x1
I: set parameters
I: sanity check of parameters
I: pkg="debhello", ver="0.0", rev="1"
I: *** start packaging in "debhello-0.0". ***
I: provide debhello_0.0.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-0.0.tar.gz debhello_0.0.orig.tar.gz
I: pwd = "/path/to/debhello-0.0"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 50 %, ext = md
I: 50 %, ext = c
I: check_all_licenses
I: ...
I: check_all_licenses completed for 3 files.
I: bunch_all_licenses
I: format_all_licenses
I: make debian/* template files
I: debmake -x "1" ...
I: creating => debian/control
I: creating => debian/copyright
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra0_changel...
I: creating => debian/changelog
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra0_rules.t...
I: creating => debian/rules
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra0source_f...
I: creating => debian/source/format
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_README....
I: creating => debian/README.Debian
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_README....
I: creating => debian/README.source
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_clean.t...
I: creating => debian/clean
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_gbp.con...
I: creating => debian/gbp.conf
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_salsa-c...
I: creating => debian/salsa-ci.yml
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_watch.t...
I: creating => debian/watch
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1tests_co...
I: creating => debian/tests/control
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1upstream...
I: creating => debian/upstream/metadata
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1patches_...
I: creating => debian/patches/series
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1source.n...
I: creating => debian/source/local-options.ex
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1source.n...
I: creating => debian/source/local-patch-header.ex
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1single_d...
I: creating => debian/dirs
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1single_i...
I: creating => debian/install
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1single_l...
I: creating => debian/links
I: $ wrap-and-sort -vast
debian/control
debian/tests/control

22

ГЛАВА 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

debian/copyright
debian/dirs
debian/install
debian/links
--- Modified files ---
debian/control
debian/dirs
debian/install
debian/links
I: $ wrap-and-sort -vast complete. Now, debian/* may have a blank line at th...

Команда debmake создаёт все шаблонные файлы на основе опций командной строки. По-
скольку никакие опции не были переданы, команда debmake выбирает для вас разумные значе-
ния по умолчанию:

• Имя пакета с исходным кодом: debhello

• Версия основной ветки разработки: 0.0

• Имя двоичного пакета: debhello

• Номер редакции Debian: 1

• Тип пакета: bin (пакет с двоичными исполняемыми файлами формата ELF)

• The -x option: -x1 (without maintainer script supports for simplicity)

Замечание

Here, the debmake command is invoked with the -x1 option to keep this tutorial
simple. Use of default -x3 option is highly recommended.

Проверим созданные шаблонные файлы.
Дерево исходного кода после простого выполнения debmake.

$ cd /path/to
$ tree
.
+-- debhello-0.0
| +-- Makefile
| +-- README.md
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog
| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- gbp.conf
| | +-- install
| | +-- links
| | +-- patches
| | | +-- series
| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format
| | | +-- local-options.ex
| | | +-- local-patch-header.ex
| | +-- tests

23

ГЛАВА 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.gz
+-- debhello_0.0.orig.tar.gz -> debhello-0.0.tar.gz

8 directories, 24 files

Файл debian/rules является сборочным сценарием, предоставляемым сопровождающим па-
кета. Ниже приводится его шаблонный файл, созданный командой debmake.

debian/rules (шаблонный файл):

$ cd /path/to/debhello-0.0
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

#override_dh_auto_install:
dh_auto_install -- prefix=/usr

#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

По сути, это стандартный файл debian/rules с командой dh. (Для удобства настройки в нём
содержится несколько закомментированных строк.)

Файл debian/control предоставляет основные метаданные пакета Debian. Ниже приведён шаб-
лонный файл, созданный командой debmake.

debian/control (шаблонный файл):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

24

ГЛАВА 5. SIMPLE PACKAGING 5.7. ШАГ 3: ИЗМЕНЕНИЕ ШАБЛОННЫХ …

Внимание

If you leave «Section: unknown» in the template debian/control file unchanged,
the lintian error may cause the build to fail.

Since this is the ELF binary executable package, the debmake command sets «Architecture: any»
and «Multi-Arch: foreign». Also, it sets required substvar parameters as «Depends: ${shlibs:Depends},
${misc:Depends}». These are explained in «Глава 6».

Замечание

Please note this debian/control file uses the RFC-822 style as documented
in «5.2 Source package control files — debian/control» of the «Debian Policy
Manual». The use of the empty line and the leading space are significant.

Файл debian/copyright предоставляет данные об авторском праве на пакет Debian. Ниже при-
ведён шаблонный файл, созданный командой debmake.

debian/copyright (шаблонный файл):

$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: <preferred name and address to reach the upstream project>
Source: <url://example.com>
#
Please double check copyright with the licensecheck(1) command.

Files: Makefile
README.md
src/hello.c

Copyright: __NO_COPYRIGHT_NOR_LICENSE__
License: __NO_COPYRIGHT_NOR_LICENSE__

#--...
Files marked as NO_LICENSE_TEXT_FOUND may be covered by the following
license/copyright files.

5.7 Шаг 3: изменение шаблонных файлов
От сопровождающего требуется вручную внести некоторые изменения шаблонных файлов.

In order to install files as a part of the system files, the $(prefix) value of /usr/local in the Makefile
should be overridden to be /usr. This can be accommodated by the following the debian/rules file with
the override_dh_auto_install target setting «prefix=/usr».

debian/rules (версия сопровождающего):

$ cd /path/to/debhello-0.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

25

https://www.debian.org/doc/debian-policy/ch-controlfields.html#source-package-control-files-debian-control

ГЛАВА 5. SIMPLE PACKAGING 5.7. ШАГ 3: ИЗМЕНЕНИЕ ШАБЛОННЫХ …

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Экспортирование переменой окружения DH_VERBOSE в файле debian/rules, как это сделано
выше, приводит к тому, что инструмент debhelper создаёт более подробный отчёт о сборке.

Exporting DEB_BUILD_MAINT_OPTION as above sets the hardening options as described in the
«FEATURE AREAS/ENVIRONMENT» in dpkg-buildflags(1). 1

Exporting DEB_CFLAGS_MAINT_APPEND as above forces the C compiler to emit all the warnings.
Exporting DEB_LDFLAGS_MAINT_APPEND as above forces the linker to link only when the library

is actually needed. 2
The dh_auto_install command for the Makefile based build system essentially runs «$(MAKE)

install DESTDIR=debian/debhello». The creation of this override_dh_auto_install target changes its
behavior to «$(MAKE) install DESTDIR=debian/debhello prefix=/usr».

Here are the maintainer versions of the debian/control and debian/copyright files.
debian/control (версия сопровождающего):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

debian/copyright (версия сопровождающего):

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

1This is a cliché to force a read-only relocation link for the hardening and to prevent the lintian warning «W: debhello:
hardening-no-relro usr/bin/hello». This is not really needed for this example but should be harmless. The lintian tool seems
to produce a false positive warning for this case which has no linked library.

2This is a cliché to prevent overlinking for the complex library dependency case such as Gnome programs. This is not really
needed for this simple example but should be harmless.

26

ГЛАВА 5. SIMPLE PACKAGING 5.7. ШАГ 3: ИЗМЕНЕНИЕ ШАБЛОННЫХ …

.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Let’s remove unused template files and edit remaining template files:

• debian/README.source

• debian/source/local-option.ex

• debian/source/local-patch-header.ex

• debian/patches/series (No upstream patch)

• clean

• dirs

• install

• links

Шаблонные файлы в debian/. (v=0.0):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 11 files

Подсказка

Configuration files used by the dh_* commands from the debhelper package
usually treat # as the start of a comment line.

27

ГЛАВА 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH …

5.8 Step 4: Building package with debuild
В данном дереве исходного кода вы можете создать неродной пакет Debian с помощью коман-
ды debuild или эквивалентных ей команд (см. «Раздел 5.4»). Вывод команды очень подробен,
выполняемые действия объясняются в нём следующим образом.

Building package with debuild
$ cd /path/to/debhello-0.0
$ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.0-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_auto_clean
make -j12 distclean

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
dh_auto_configure
dh_auto_build

make -j12 "INSTALL=install --strip-program=true"
make[1]: Entering directory '/path/to/debhello-0.0'
CFLAGS=-g -O2 -Werror=implicit-function-declaration
...
Finished running lintian.

You can verify that CFLAGS is updated properly with -Wall and -pedantic by the DEB_CFLAGS_MAINT_APPEND
variable.

The manpage should be added to the package as reported by the lintian package, as shown in later
examples (see «Глава 14»). Let’s move on for now.

Проверим результат сборки.
Файлы debhello версии 0.0, созданные с помощью команды debuild:

$ cd /path/to
$ tree -FL 1
./
+-- debhello-0.0/
+-- debhello-0.0.tar.gz
+-- debhello-dbgsym_0.0-1_amd64.deb
+-- debhello_0.0-1.debian.tar.xz
+-- debhello_0.0-1.dsc
+-- debhello_0.0-1_amd64.build
+-- debhello_0.0-1_amd64.buildinfo
+-- debhello_0.0-1_amd64.changes
+-- debhello_0.0-1_amd64.deb
+-- debhello_0.0.orig.tar.gz -> debhello-0.0.tar.gz

2 directories, 9 files

Вы видите все созданные файлы.

• debhello_0.0.orig.tar.gz представляет собой символьную ссылку на tar-архив основной ветки
разработки.

• debhello_0.0-1.debian.tar.xz содержит файлы, созданные сопровождающим.

• debhello_0.0-1.dsc представляет собой файл с метаданными для пакета Debian с исходным
кодом.

28

ГЛАВА 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH …

• debhello_0.0-1_amd64.deb — двоичный пакет Debian.

• The debhello-dbgsym_0.0-1_amd64.deb is the Debian debug symbol binary package. See «Раз-
дел 10.21».

• The debhello_0.0-1_amd64.build file is the build log file.

• The debhello_0.0-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

• debhello_0.0-1_amd64.changes — файл с метаданными для двоичного пакета Debian.

debhello_0.0-1.debian.tar.xz содержит изменения Debian, внесённые в исходный код основной
ветки разработки. Содержимое этого файла приведено ниже.

Содержимое архива debhello_0.0-1.debian.tar.xz:

$ tar -tzf debhello-0.0.tar.gz
debhello-0.0/
debhello-0.0/src/
debhello-0.0/src/hello.c
debhello-0.0/Makefile
debhello-0.0/README.md
$ tar --xz -tf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.0-1_amd64.deb contains the binary files to be installed to the target system.
The debhello-dbgsym_0.0-1_amd64.deb contains the debug symbol files to be installed to the

target system.
The binary package contents of all binary packages:

$ dpkg -c debhello-dbgsym_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/lib/
drwxr-xr-x root/root/usr/lib/debug/
drwxr-xr-x root/root/usr/lib/debug/.build-id/
drwxr-xr-x root/root/usr/lib/debug/.build-id/c4/
-rw-r--r-- root/root/usr/lib/debug/.build-id/c4/cec6427d45de48efc7f263...
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
lrwxrwxrwx root/root/usr/share/doc/debhello-dbgsym -> debhello
$ dpkg -c debhello_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright

29

ГЛАВА 5. SIMPLE PACKAGING 5.9. STEP 3 (ALTERNATIVES): …

The generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=0.0):

$ dpkg -f debhello-dbgsym_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 0.0-1)
$ dpkg -f debhello_0.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

Предостережение

Many more details need to be addressed before uploading the package to the
Debian archive.

Замечание

Если вы пропустили ручную настройку автоматически созданных командой
debmake файлов настройки, то у созданного двоичного пакета может отсут-
ствовать понятное другим описание пакета, а также пакет может несоответ-
ствовать некоторым требованиям политики. Такой сырой пакет вполне хо-
рошо работает, если передать его команде dpkg, и может оказаться вполне
достаточным для его локального развёртывания.

5.9 Step 3 (alternatives): Modification to the upstream source
The above example did not touch the upstream source to make the proper Debian package. An alternative
approach as the maintainer is to modify files in the upstream source. For example, Makefile may be
modified to set the $(prefix) value to /usr.

Замечание

The above «Раздел 5.7» using the debian/rules file is the better approach for
packaging for this example. But let’s continue on with this alternative approaches
as a leaning experience.

In the following, let’s consider 3 simple variants of this alternative approach to generate debian/patches/*
files representing modifications to the upstream source in the Debian source format «3.0 (quilt)». These
substitute «Раздел 5.7» in the above step-by-step example:

• «Раздел 5.10»

• «Раздел 5.11»

• «Раздел 5.12»

Please note the debian/rules file used for these examples doesn’t have the override_dh_auto_install
target as follows:

debian/rules (альтернативная версия сопровождающего):

$ cd /path/to/debhello-0.0
$ vim debian/rules
... hack, hack, hack, ...

30

ГЛАВА 5. SIMPLE PACKAGING 5.10. PATCH BY «DIFF -U» APPROACH

$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

5.10 Patch by «diff -u» approach
Here, the patch file 000-prefix-usr.patch is created using the diff command.

Patch by diff -u
$ cp -a debhello-0.0 debhello-0.0.orig
$ vim debhello-0.0/Makefile
... hack, hack, hack, ...
$ diff -Nru debhello-0.0.orig debhello-0.0 >000-prefix-usr.patch
$ cat 000-prefix-usr.patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile 2024-11-29 07:57:10.299591959 +0000
+++ debhello-0.0/Makefile 2024-11-29 07:57:10.391593434 +0000
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

$ rm -rf debhello-0.0
$ mv -f debhello-0.0.orig debhello-0.0

Please note that the upstream source tree is restored to the original state after generating a patch
file 000-prefix-usr.patch.

This 000-prefix-usr.patch is edited to be DEP-3 conforming and moved to the right location as below.
000-prefix-usr.patch (DEP-3):

$ echo '000-prefix-usr.patch' >debian/patches/series
$ vim ../000-prefix-usr.patch
... hack, hack, hack, ...
$ mv -f ../000-prefix-usr.patch debian/patches/000-prefix-usr.patch
$ cat debian/patches/000-prefix-usr.patch
From: Osamu Aoki <osamu@debian.org>
Description: set prefix=/usr patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

Замечание

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of «Раздел 5.8», the dpkg-source command
assumes that no patch was applied to the upstream source, since the
.pc/applied-patches is missing.

31

https://dep-team.pages.debian.net/deps/dep3/

ГЛАВА 5. SIMPLE PACKAGING 5.11. PATCH BY DQUILT APPROACH

5.11 Patch by dquilt approach
Here, the patch file 000-prefix-usr.patch is created using the dquilt command.

dquilt is a simple wrapper of the quilt program. The syntax and function of the dquilt command
is the same as the quilt(1) command, except for the fact that the generated patch is stored in the
debian/patches/ directory.

Patch by dquilt

$ dquilt new 000-prefix-usr.patch
Patch debian/patches/000-prefix-usr.patch is now on top
$ dquilt add Makefile
File Makefile added to patch debian/patches/000-prefix-usr.patch
... hack, hack, hack, ...
$ head -1 Makefile
prefix = /usr
$ dquilt refresh
Refreshed patch debian/patches/000-prefix-usr.patch
$ dquilt header -e --dep3
... edit the DEP-3 patch header with editor
$ tree -a
.
+-- .pc
| +-- .quilt_patches
| +-- .quilt_series
| +-- .version
| +-- 000-prefix-usr.patch
| | +-- .timestamp
| | +-- Makefile
| +-- applied-patches
+-- Makefile
+-- README.md
+-- debian
| +-- README.Debian
| +-- README.source
| +-- changelog
| +-- clean
| +-- control
| +-- copyright
| +-- dirs
| +-- gbp.conf
| +-- install
| +-- links
| +-- patches
| | +-- 000-prefix-usr.patch
| | +-- series
| +-- rules
| +-- salsa-ci.yml
| +-- source
| | +-- format
| | +-- local-options.ex
| | +-- local-patch-header.ex
| +-- tests
| | +-- control
| +-- upstream
| | +-- metadata
| +-- watch
+-- src

+-- hello.c

9 directories, 29 files
$ cat debian/patches/series
000-prefix-usr.patch
$ cat debian/patches/000-prefix-usr.patch
Description: set prefix=/usr patch

32

ГЛАВА 5. SIMPLE PACKAGING 5.12. PATCH BY «DPKG-SOURCE …

Author: Osamu Aoki <osamu@debian.org>
Index: debhello-0.0/Makefile
===
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

Here, Makefile in the upstream source tree doesn’t need to be restored to the original state for the
packaging.

Замечание

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of «Раздел 5.8», the dpkg-source command
assumes that patches were applied to the upstream source, since the
.pc/applied-patches exists.

The upstream source tree can be restored to the original state for the packaging.
The upstream source tree (restored):

$ dquilt pop -a
Removing patch debian/patches/000-prefix-usr.patch
Restoring Makefile

No patches applied
$ head -1 Makefile
prefix = /usr/local
$ tree -a .pc
.pc
+-- .quilt_patches
+-- .quilt_series
+-- .version

1 directory, 3 files

Here, Makefile is restored and the .pc/applied-patches is missing.

5.12 Patch by «dpkg-source --auto-commit» approach
Here, the patch file isn’t created in this step but the source files are setup to create debian/patches/*
files in the following step of «Раздел 5.8».

Отредактируем исходный код основной ветки разработки.
Modified Makefile

$ vim Makefile
... hack, hack, hack, ...
$ head -n1 Makefile
prefix = /usr

Let’s edit debian/source/local-options:
debian/source/local-options for auto-commit

$ mv debian/source/local-options.ex debian/source/local-options
$ vim debian/source/local-options
... hack, hack, hack, ...
$ cat debian/source/local-options
== Patch applied strategy (merge) ==
#

33

ГЛАВА 5. SIMPLE PACKAGING 5.12. PATCH BY «DPKG-SOURCE …

The source outside of debian/ directory is modified by maintainer and
different from the upstream one:
* Workflow using dpkg-source commit (commit all to VCS after dpkg-source ...
https://www.debian.org/doc/manuals/debmake-doc/ch04.en.html#dpkg-sour...
* Workflow described in dgit-maint-merge(7)
#
single-debian-patch
auto-commit

Let’s edit debian/source/local-patch-header:
debian/source/local-patch-header for auto-commit

$ mv debian/source/local-patch-header.ex debian/source/local-patch-header
$ vim debian/source/local-patch-header
... hack, hack, hack, ...
$ cat debian/source/local-patch-header
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

Let’s remove debian/patches/* files and other unused template files.
Remove unused template files

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree debian
debian
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules
+-- salsa-ci.yml
+-- source
| +-- format
| +-- local-options
| +-- local-patch-header
+-- tests
| +-- control
+-- upstream
| +-- metadata
+-- watch

4 directories, 13 files

There are no debian/patches/* files at the end of this step.

Замечание

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of «Раздел 5.8», the dpkg-source
command uses options specified in debian/source/local-options to auto-
commit modification applied to the upstream source as patches/debian-
changes.

Let’s inspect the Debian source package generated after the following «Раздел 5.8» step and extracting
files from debhello-0.0.debian.tar.xz.

Inspect debhello-0.0.debian.tar.xz after debuild

$ tar --xz -xvf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian

34

ГЛАВА 5. SIMPLE PACKAGING 5.12. PATCH BY «DPKG-SOURCE …

debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/patches/
debian/patches/debian-changes
debian/patches/series
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

Let’s check generated debian/patches/* files.
Inspect debian/patches/* after debuild

$ cat debian/patches/series
debian-changes
$ cat debian/patches/debian-changes
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

The Debian source package debhello-0.0.debian.tar.xz is confirmed to be generated properly with
debian/patches/* files for the Debian modification.

35

Глава 6

Basics for packaging

Here, a broad overview is presented without using VCS operations for the basic rules of Debian packaging
focusing on the non-native Debian package in the «3.0 (quilt)» format.

Замечание

Для ясности в дайльнейшем были умышленно опущены некоторые де-
тали. Ознакомьтесь со страницами руководства dpkg-source(1), dpkg-
buildpackage(1), dpkg(1), dpkg-deb(1), deb(5) и др.

Пакет Debian с исходным кодом является набором входных файлов, используемых для сборки
двоичного пакета Debian, и не представляет собой только один файл.

The Debian binary package is a special archive file which holds a set of installable binary data with
its associated information.

Один пакет Debian с исходным кодом может использоваться для создания нескольких двоичных
пакетов Debian, определяемых в файле debian/control.

The non-native Debian package in the Debian source format «3.0 (quilt)» is the most normal Debian
source package format.

Замечание

Сущесвтует множество обёрточных сценариев. Используйте их для упроще-
ния вашей работы, но обязательно разберитесь с основами их внутреннего
устройства.

6.1 Работа по созданию пакета
The Debian packaging workflow to create a Debian binary package involves generating several specifically
named files (see «Раздел 6.3») as defined in the «Debian Policy Manual». This workflow can be summarized
in 10 steps with some over simplification as follows.

1. Загружается tar-архив основной ветки разработки в виде файла пакет-версия.tar.gz.

2. Этот архив распаковывается, создаётся множество файлов в каталоге пакет-версия/.

3. Архив основной ветки разработки копируется (или создаётся символьная ссылка на него) в
файл со специальным именем имяпакета_версия.orig.tar.gz.

• символ, разделяющий пакет и версию, заменяется с - (дефиса) на _ (подчёркивание)
• к расширению добавляется .orig.

4. К исходному коду основной ветки разработки в каталог пакет-версия/debian/ добавляются
файлы спецификации пакета Debian.

36

ГЛАВА 6. BASICS FOR PACKAGING 6.1. РАБОТА ПО СОЗДАНИЮ ПАКЕТА

• Обязательные файлы спецификации в каталоге debian/*:

debian/rules Исполняемый сценарий для сборки пакета Debian (см. «Раздел 6.5»)
debian/control The package configuration file containing the source package name, the

source build dependencies, the binary package name, the binary dependencies, etc. (see
«Раздел 6.6»)

debian/changelog Файл с историей пакета Debian, определяющий в первой строке вер-
сию пакета из основной ветки разработки и номер редакции Debian (см. «Раздел 6.7»)

debian/copyright Информация об авторских правах и лицензии (см. «Раздел 6.8»)
• Необязательные файлы спецификации в каталоге debian/* (see «Раздел 6.14»):
• The debmake command invoked in the package-version/ directory may be used to provide

the initial template of these configuration files.
– Обязательные файлы спецификации создаются даже при использовании опции -x0.
– Команда debmake не перезаписывает какие-либо существующией файлы настрой-

ки.
• These files must be manually edited to their perfection according to the «Debian Policy Manual»

and «Debian Developer’s Reference».

5. The dpkg-buildpackage command (usually from its wrapper debuild or sbuild) is invoked in
the package-version/ directory to make the Debian source and binary packages by invoking the
debian/rules script.

• The current directory is set as: «CURDIR=/path/to/package-version/»
• Create the Debian source package in the Debian source format «3.0 (quilt)» using dpkg-

source(1)
– package_version.orig.tar.gz (copy or symlink of package-version.tar.gz)
– package_version-revision.debian.tar.xz (tarball of debian/ found in package-version/)
– package_version-revision.dsc

• Build the source using «debian/rules build» into $(DESTDIR)
– «DESTDIR=debian/binarypackage/» for single binary package 1
– «DESTDIR=debian/tmp/» for multi binary package

• Создание двоичного пакета Debian с помощью dpkg-deb(1), dpkg-genbuildinfo(1) и dpkg-
genchanges(1).

– двоичныйпакет_версия-редакция_архитектура.deb
– … (There may be multiple Debian binary package files.)
– пакет_версия-редакция_архитектура.changes
– package_version-revision_arch.buildinfo

6. Проверка качества пакета Debian с помощью команды lintian. (рекомендуется)

• Follow the rejection guidelines from ftp-master.
– «REJECT-FAQ»
– «Лист проверок для пакетов из NEW»
– «Автоматические отклонения пакетов Lintian» («список тегов lintian»)

7. Test the goodness of the generated Debian binary package manually by installing it and running
its programs.

8. After confirming the goodness, prepare files for the normal source-only upload to the Debian
archive.

9. Sign the Debian package file with the debsign command using your private GPG key.

• Use «debsign package_version-revision_source.changes» (normal source-only upload situation)

1This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

37

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/developers-reference/
https://ftp-master.debian.org/
https://ftp-master.debian.org/REJECT-FAQ.html
https://ftp-master.debian.org/NEW-checklist.html
https://ftp-master.debian.org/#lintianrejects
https://ftp-master.debian.org/static/lintian.tags

ГЛАВА 6. BASICS FOR PACKAGING 6.2. DEBHELPER PACKAGE

• Use «debsign package_version-revision_arch.changes» (exceptional binary upload situation
such as NEW uploads, and security uploads) files for the binary Debian package upload.

10. Upload the set of the Debian package files with the dput command to the Debian archive.

• Use «dput package_version-revision_source.changes» (source-only upload)
• Use «dput package_version-revision_arch.changes» (binary upload)

Test building and confirming of the binary package goodness as above is the moral obligation as
a diligent Debian developer but there is no physical barrier for people to skip such operations at this
moment for the source-only upload.

Теперь замените каждую часть имени файла.

• часть пакет на имя пакета Debian с исходным кодом

• часть двоичныйпакет на имя двоичного пакета Debian

• часть версия на версию основной ветки разработки

• часть редакция на номер редации Debian

• the arch part with the package architecture (e.g., amd64)

See also «Source-only uploads».

Подсказка

Использется множество различных стратегий по управлению заплатами и
использованию систем управления версиями. Вам не следует использовать
все из них.

Подсказка

There is very extensive documentation in «Chapter 6. Best Packaging Practices»
in the «Debian Developer’s Reference». Please read it.

6.2 debhelper package
Although a Debian package can be made by writing a debian/rules script without using the debhelper
package, it is impractical to do so. There are too many modern «Debian Policy» required features to be
addressed, such as application of the proper file permissions, use of the proper architecture dependent
library installation path, insertion of the installation hook scripts, generation of the debug symbol package,
generation of package dependency information, generation of the package information files, application
of the proper timestamp for reproducible build, etc.

Debhelper package provides a set of useful scripts in order to simplify Debian’s packaging workflow
and reduce the burden of package maintainers. When properly used, they will help packagers handle
and implement «Debian Policy» required features automatically.

Процедура создания пакета Debian в современном стиле может быть организована в виде на-
бора простых модульных действий:

• using the dh command to invoke many utility scripts automatically from the debhelper package,
and

• настройка их поведения с помощью декларативных файлов настройки в каталоге debian/.

38

https://wiki.debian.org/SourceOnlyUpload
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

ГЛАВА 6. BASICS FOR PACKAGING 6.3. ИМЯ ПАКЕТА И ВЕРСИЯ

You should almost always use debhelper as your package’s build dependency. This document also
assumes that you are using a fairly contemporary version of debhelper to handle packaging works in
the following contents.

Замечание

For debhelper «compat >= 9», the dh command exports compiler flags
(CFLAGS, CXXFLAGS, FFLAGS, CPPFLAGS and LDFLAGS) with values as
returned by dpkg-buildflags if they are not set previously. (The dh command
calls set_buildflags defined in the Debian::Debhelper::Dh_Lib module.)

Замечание

debhelper(1) changes its behavior with time. Please make sure to read
debhelper-compat-upgrade-checklist(7) to understand the situation.

6.3 Имя пакета и версия
Если исходный код основной ветки разработки поставляется в виде архива hello-0.9.12.tar.gz,
можно использовать hello в качестве имени пакета с исходным кодом основной ветки разработки,
а 0.9.12 — в качестве версии основной ветки.

There are some limitations for what characters may be used as a part of the Debian package. The
most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in «Chapter 5 - Control files and their fields» in the «Debian Policy Manual».
Вам следует соответствующим образом изменить имя пакета и версию основной ветки разра-

ботки для создания пакета Debian.
Для того, чтобы информация об имени пакета и номере версии эффективно обрабатывались

такими популярными инструментами как команда aptitude, рекомендуется, чтобы длина имени
пакета была равна 30 символам или была меньше; а общая длина версии и редакции была равна
14 символам или меньше. 2

Для того, чтобы не возникали конфликты, видимое пользователю имя двоичного пакета не сле-
дует выбирать из числа распространённых слов.

If upstream does not use a normal versioning scheme such as 2.30.32 but uses some kind of date
such as 11Apr29, a random codename string, or a VCS hash value as part of the version, make sure to
remove them from the upstream version. Such information can be recorded in the debian/changelog
file. If you need to invent a version string, use the YYYYMMDD format such as 20110429 as upstream
version. This ensures that the dpkg command interprets later versions correctly as upgrades. If you need
to ensure a smooth transition to a normal version scheme such as 0.1 in the future, use the 0~YYMMDD
format such as 0~110429 as upstream version, instead.

Строки версий можно сравнивать друг с другом с помощью команды dpkg следующим образом.

$ dpkg --compare-versions ver1 op ver2

2Для более чем 90% пакетов длина имени пакета равна 24 символам или меньше этого числа; длина версии основной
ветки равна 10 символам или меньше, а длина номера редакции Debian равна 3 символам или меньше.

39

https://www.debian.org/doc/debian-policy/#document-ch-controlfields

ГЛАВА 6. BASICS FOR PACKAGING 6.4. РОДНОЙ ПАКЕТ DEBIAN

Правило сравнения версий может быть представлены следующим образом:

• Строки сравниваются в порядке с начала до конца.

• Буквы больше чисел.

• Числа сравниваются как целые числа.

• Буквы сравниваются в порядке таблицы кодов ASCII.

Также имеются специальные правила для символов точки (.), плюса (+) и тильды (~). Они по-
казаны ниже.

0.0 < 0.5 < 0.10 < 0.99 < 1 < 1.0~rc1 < 1.0 < 1.0+b1 < 1.0+nmu1 < 1.1 < 2.0

Один сложный случай возникает тогда, когда разработчики основной ветки выпускают hello-
0.9.12-ReleaseCandidate-99.tar.gz как предварительный выпуск для hello-0.9.12.tar.gz. Вам сле-
дует гарантировать, что обновление пакета Debian будет происходить правильно, переименовав
для этого архив с исходным кодом основной ветки в hello-0.9.12~rc99.tar.gz.

6.4 Родной пакет Debian
The non-native Debian package in the Debian source format «3.0 (quilt)» is the most normal Debian
source package format. The debian/source/format file should have «3.0 (quilt)» in it as described in
dpkg-source(1). The above workflow and the following packaging examples always use this format.

A native Debian package is the rare Debian binary package format. It may be used only when the
package is useful and valuable only for Debian. Thus, its use is generally discouraged.

Предостережение

A native Debian package is often accidentally built when its upstream tarball
is not accessible from the dpkg-buildpackage command with its correct name
package_version.orig.tar.gz . This is a typical newbie mistake caused by making
a symlink name with «-» instead of the correct one with «_».

A native Debian package has no separation between the upstream code and the Debian changes
and consists only of the following:

• package_version.tar.gz (copy or symlink of package-version.tar.gz with debian/* files.)

• package_version.dsc

If you need to create a native Debian package, create it in the Debian source format «3.0 (native)»
using dpkg-source(1).

Подсказка

There is no need to create the tarball in advance if the native Debian package
format is used. The debian/source/format file should have «3.0 (native)» in it
as described in dpkg-source(1) and The debian/source/format file should have
the version without the Debian revision (1.0 instead of 1.0-1). Then, the tarball
containing is generated when «dpkg-source -b» is invoked in the source tree.

6.5 debian/rules file
The debian/rules file is the executable script which re-targets the upstream build system to install files
in the $(DESTDIR) and creates the archive file of the generated files as the deb file. The deb file is used
for the binary distribution and installed to the system using the dpkg command.

40

ГЛАВА 6. BASICS FOR PACKAGING 6.6. DEBIAN/CONTROL FILE

The Debian policy compliant debian/rules file supporting all the required targets can be written as
simple as 3:

Простой файл debian/rules:

#!/usr/bin/make -f
#export DH_VERBOSE = 1

%:
dh $@

The dh command functions as the sequencer to call all required «dh target» commands at the right
moment. ⁴

• dh clean : вычищет файлы в дереве исходного кода.

• dh build : сборка дерева исходного кода

• dh build-arch : сборка зависящих от архитектуры пакетов из дерева исходного кода

• dh build-indep : сборка независящих от архитектуры пакетов из дерева исходного кода

• dh install : установка двоичных файлов в $(DESTDIR)

• dh install-arch : установка двоичных файлов в $(DESTDIR) для зависящих от архитектуры
пакетов

• dh install-indep : установка двоичных файлов в $(DESTDIR) для независящих от архитектуры
пакетов

• dh binary : создание файла deb

• dh binary-arch : создание файла deb для зависящих от архитектуры пакетов

• dh binary-indep : создание файла deb для независящих от архитектуры пакетов

Here, $(DESTDIR) path depends on the build type.

• «DESTDIR=debian/binarypackage/» for single binary package ⁵

• «DESTDIR=debian/tmp/» for multi binary package

See «Раздел 9.2» and «Раздел 9.3» for customization.

Подсказка

Setting «export DH_VERBOSE = 1» outputs every command that modifies files
on the build system. Also it enables verbose build logs for some build systems.

6.6 debian/control file
The debian/control file consists of blocks of metadata separated by blank lines. Each block of metadata
defines the following, in this order:

• метаданных пакета Debian с исходным кодом

• метаданные двоичных пакетов Debian

3Команда debmake создаёт несколько более сложный файл debian/rules. Тем не менее, это базовая часть.
⁴This simplicity is available since version 7 of the debhelper package. This guide assumes the use of debhelper version 13

or newer.
⁵This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change

the default to DESTDIR=debian/tmp/ .

41

ГЛАВА 6. BASICS FOR PACKAGING 6.7. DEBIAN/CHANGELOG FILE

See «Chapter 5 - Control files and their fields» of the ”Debian Policy Manual” for the definition of each
metadata field.

Замечание

The debmake command sets the debian/control file with «Build-Depends:
debhelper-compat (= 13)» to set the debhelper compatibility level.

Подсказка

If an existing package has a debhelper compatibility level lower than 13, it’s
probably time to update its packaging.

6.7 debian/changelog file
The debian/changelog file records the Debian package history.

• Edit this file using the debchange command (alias dch).

• The first line defines the upstream package version and the Debian revision.

• Document changes in a specific, formal, and concise style.

– If Debian maintainer modification fixes reported bugs, add «Closes: #<bug_number>» to
close those bugs.

• Even if you’re uploading your package yourself, you must document all non-trivial user-visible
changes, such as:

– Security-related bug fixes.
– User interface changes.

• If you’re asking a sponsor to upload it, document changes more comprehensively, including all
packaging-related ones, to help with package review.

– The sponsor shouldn’t have to guess your reasoning behind package changes.
– Remember that the sponsor’s time is valuable.

After finishing your packaging and verifying its quality, execute the ”dch -r” command and save
the finalized debian/changelog file with the suite normally set to unstable. ⁶ If you’re packaging for
backports, security updates, LTS, etc., use the appropriate distribution names instead.

The debmake command creates the initial template file with the upstream package version and the
Debian revision. The distribution is set to UNRELEASED to prevent accidental uploads to the Debian
archive.

Подсказка

The date string used in the debian/changelog file can be manually generated
by the «LC_ALL=C date -R» command.

⁶If you’re using the vim editor, make sure to save this with the ”:wq” command.

42

https://www.debian.org/doc/debian-policy/ch-controlfields.html

ГЛАВА 6. BASICS FOR PACKAGING 6.8. DEBIAN/COPYRIGHT FILE

Подсказка

Use a debian/changelog entry with a version string like 1.0.1-1~rc1 when
experimenting. Later, consolidate such changelog entries into a single entry for
the official package.

The debian/changelog file is installed in the /usr/share/doc/binarypackage directory as changelog.Debian.gz
by the dh_installchangelogs command.

Журнал изменений основной ветки устанавливается в каталог /usr/share/doc/двоичныйпакет
под именем changelog.gz.

The upstream changelog is automatically found by the dh_installchangelogs using the case insensitive
match of its file name to changelog, changes, changelog.txt, changes.txt, history, history.txt, or
changelog.md and searched in the ./ doc/ or docs/ directories.

6.8 debian/copyright file
Debian takes copyright and license matters very seriously. The ”Debian Policy Manual” requires a summary
of these in the debian/copyright file of the package.

• «12.5. Copyright information»

• «2.3. Copyright considerations»

• «License information»

The debmake command creates the initial debian/copyright template file.

• Double-check copyright information using the licensecheck(1) command.

• Format it as a «machine-readable debian/copyright file (DEP-5)».

Unless specifically requested to be pedantic with the -P option, the debmake command skips reporting
auto-generated files with permissive licenses for practicality.

Предостережение

The debian/copyright file should be sorted with generic file patterns at the top
of the list. See «Раздел 16.6».

Замечание

Если при проверке лицензионной информации вы обнаружите какие-либо
проблемы, то отправьте сообщение об ошибке в пакете debmake с про-
блемной частью текста, содержащего информацию об авторском праве и
лицензии.

6.9 debian/patches/* files
As demonstrated in «Раздел 5.9», the debian/patches/ directory holds

• patch-file-name.patch files providing -p1 patches and

43

https://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
https://www.debian.org/doc/debian-policy/ch-archive.html#s-pkgcopyright
https://www.debian.org/legal/licenses/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

ГЛАВА 6. BASICS FOR PACKAGING 6.10. DEBIAN/SOURCE/INCLUDE-BINARIES …

• the series file which defines how these patches are applied.

See how these files are used in:

• «Раздел 13.6» to build the Debian source package

• «Раздел 13.7» to extract source files from the Debian source package

Замечание

Header texts of these patches should conform to «DEP-3».

Замечание

If you want to use VCS tools such as git, gbp and dgit to create and manage
these patches after learning basics here, please refer to later in «Глава 11».

6.10 debian/source/include-binaries file
The «dpkg-source --commit» command functions like dquilt but has one advantage over the dquilt
command. While the dquilt command can’t handle modified binary files, the «dpkg-source --commit»
command detects modified binary files and lists them in the debian/source/include-binaries file to
include them in the Debian tarball as a part of the Debian source package.

6.11 debian/watch file
The uscan(1) command downloads the latest upstream version using the debian/watch file. E.g.:

Basic debian/watch file:

version=4
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

The uscan command may verify the authenticity of the upstream tarball with optional configuration
(see «Раздел 6.12»).

See uscan(1), «Раздел 9.4», «Раздел 8.1», and «Раздел 11.10» for more.

6.12 debian/upstream/signing-key.asc file
Some packages are signed by a GPG key and their authenticity can be verified using their public GPG
key.

For example, «GNU hello» can be downloaded via HTTP from https://ftp.gnu.org/gnu/hello/ . There
are sets of files:

• hello-версия.tar.gz (исходный код основной ветки)

• hello-версия.tar.gz.sig (отделённая подпись)

Выберем самую последнюю версию.
Download the upstream tarball and its signature.

44

https://dep-team.pages.debian.net/deps/dep3/
https://www.gnu.org/software/hello/
https://ftp.gnu.org/gnu/hello/

ГЛАВА 6. BASICS FOR PACKAGING 6.13. DEBIAN/SALSA-CI.YML FILE

$ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.gz
...
$ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.gz.sig
...
$ gpg --verify hello-2.9.tar.gz.sig
gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Can't check signature: public key not found

If you know the public GPG key of the upstream maintainer from the mailing list, use it as the
debian/upstream/signing-key.asc file. Otherwise, use the hkp keyserver and check it via your web
of trust.

Download public GPG key for the upstream

$ gpg --keyserver hkp://keys.gnupg.net --recv-key 80EE4A00
gpg: requesting key 80EE4A00 from hkp server keys.gnupg.net
gpg: key 80EE4A00: public key "Reuben Thomas <rrt@sc3d.org>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: imported: 1
$ gpg --verify hello-2.9.tar.gz.sig
gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Good signature from "Reuben Thomas <rrt@sc3d.org>"
...

Primary key fingerprint: 9297 8852 A62F A5E2 85B2 A174 6808 9F73 80EE 4A00

Подсказка

If your network environment blocks access to the HKP port 11371, use
«hkp://keyserver.ubuntu.com:80» instead.

After confirming the key ID 80EE4A00 is a trustworthy one, download its public key into the debian/upstream/signing-
key.asc file.

Set public GPG key to debian/upstream/signing-key.asc

$ gpg --armor --export 80EE4A00 >debian/upstream/signing-key.asc

With the above debian/upstream/signing-key.asc file and the following debian/watch file, the uscan
command can verify the authenticity of the upstream tarball after its download. E.g.:

Improved debian/watch file with GPG support:

version=4
opts="pgpsigurlmangle=s/$/.sig/" \
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

6.13 debian/salsa-ci.yml file
Install Salsa CI configuration file. See «Раздел 11.3».

6.14 Other debian/* files
В каталог debian/ можно добавить дополнительные файлы настройки. Большинство из них ис-
пользуются для управления командами dh_*, предоставляемыми пакетом debhelper, но также
имеются дополнительные файлы для команд dpkg-source, lintian и gbp.

45

https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/Web_of_trust
https://salsa.debian.org/salsa-ci-team/pipeline

ГЛАВА 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

Подсказка

Even an upstream source without its build system can be packaged just by using
these files. See «Раздел 14.2» as an example.

The alphabetical list of notable optional debian/binarypackage.* configuration files listed below provides
very powerful means to set the installation path of files. Please note:

• The «-x[01234]» superscript notation that appears in the following list indicates the minimum value
for the debmake -x option that generates the associated template file. See «Раздел 16.9» or
debmake(1) for details.

• For a single binary package, the «binarypackage.» part of the filename in the list may be removed.

• For a multi binary package, a configuration file missing the «binarypackage» part of the filename
is applied to the first binary package listed in the debian/control.

• When there are many binary packages, their configurations can be specified independently by
prefixing their name to their configuration filenames such as «package-1.install», «package-2.install»,
etc.

• Некоторые шаблонные файлы настроек могут не быть созданы командой debmake. В таких
случаях вам следует создать их с помощью редактора.

• Some configuration template files generated by the debmake command with an extra .ex suffix
need to be activated by removing that suffix.

• Неиспользуемые шаблонные файлы настроек, созданные командой debmake, следует уда-
лить.

• Копируйте шаблонные файлы настроек по необходимости в файлы с соответствующими
именами двоичных пакетов.

двоичныйпакет.bug-control -x3 устанавливается как usr/share/bug/двоичныйпакет/control
в двоичныйпакет. См. «Раздел 9.11».

двоичныйпакет.bug-presubj -x3 устанавливается как usr/share/bug/двоичныйпакет/presubj
в binarypackage. См. «Раздел 9.11».

двоичныйпакет.bug-script -x3 устанавливается как usr/share/bug/двоичныйпакет или usr/share/bug/двоичныйпакет/script
в двоичныйпакет. См. «Раздел 9.11».

binarypackage.bash-completion -x3 List bash completion scripts to be installed.
The bash-completion package is required for both build and user environments.
См. dh_bash-completion(1).

clean -x2 List files that should be removed but are not cleaned by the dh_auto_clean command.
См. dh_auto_clean(1) и dh_clean(1).

compat -x4 Set the debhelper compatibility level. (deprecated)
Use «Build-Depends: debhelper-compat (= 13)» in debian/control to specify the compatibility
level and remove debian/compat.
See «COMPATIBILITY LEVELS» in debhelper(7).

binarypackage.conffiles -x3 This optional file is installed into the DEBIAN directory within the
binary package while supplementing it with all the conffiles auto-detected by debhelper.
This file is primarily useful for using ”special” entries such as the remove-on-upgrade feature
from dpkg(1).
If the program you’re packaging requires every user to modify the configuration files in the
/etc directory, there are two popular ways to arrange for them not to be conffiles, keeping the
dpkg command happy and quiet.

46

ГЛАВА 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

– Создайте символьную ссылку в каталоге /etc, указывающую на файл в каталоге /var,
создаваемый сценариями сопровождающего.

– Создайте файл с помощью сценариев сопровождающего в каталоге /etc.
См. dh_installdeb(1).

binarypackage.config -x3 Это config-сценарий debconf, используемый для того, чтобы за-
давать пользователю любые необходимые для настройки пакета вопросы. См. «Раз-
дел 10.22».

двоичныйпакет.cron.hourly -x3 Устанавливается в файл etc/cron/hourly/двоичныйпакет
в двоичныйпакет.
См. dh_installcron(1) и cron(8).

двоичныйпакет.cron.daily -x3 Устанавливается в файл etc/cron/daily/двоичныйпакет в дво-
ичныйпакет.
См. dh_installcron(1) и cron(8).

двоичныйпакет.cron.weekly -x3 Устанавливается в файл etc/cron/weekly/двоичныйпакет
в двоичныйпакет.
См. dh_installcron(1) и cron(8).

двоичныйпакет.cron.monthly -x3 Installed into the *etc/cron/monthly/*binarypackage file in binarypackage.
См. dh_installcron(1) и cron(8).

двоичныйпакет.cron.d -x3 Устанавливается в файл etc/cron.d/двоичныйпакет в двоичный-
пакет.
См. dh_installcron(1), cron(8) и crontab(5).

двоичныйпакет.default -x3 Если такой файл существует, то он устанавливается в etc/default/двоичныйпакет
в двоичныйпакет.
См. dh_installinit(1).

binarypackage.dirs -x1 Содержит список каталогов, которые должны быть созданы в двоич-
ныйпакет.
См. dh_installdirs(1).
Это это не требуется, поскольку все команды dh_install* автоматически создают необ-
ходимые каталоги. Используйте этот файл только в том случае, если у вас возникают
какие-либо затруднения.

binarypackage.doc-base -x1 Устанавливается как управляющий файл doc-base в двоичный-
пакет.
See dh_installdocs(1) and «Debian doc-base Manual (doc-base.html)» provided by the
doc-base package.

binarypackage.docs -x1 Создержит список файлов документации для их установки в двоич-
ныйпакет.
См. dh_installdocs(1).

двоичныйпакет.emacsen-compat -x3 Устанавливается в usr/lib/emacsen-common/packages/compat/двоичныйпакет
в binarypackage.
См. dh_installemacsen(1).

двоичныйпакет.emacsen-install -x3 Устанавливается в usr/lib/emacsen-common/packages/install/двоичныйпакет
в двоичныйпакет.
См. dh_installemacsen(1).

двоичныйпакет.emacsen-remove -x3 Устанавливается в usr/lib/emacsen-common/packages/remove/двоичныйпакет
в двоичныйпакет.
См. dh_installemacsen(1).

двоичныйпакет.emacsen-startup -x3 Устанавливается в usr/lib/emacsen-common/packages/startup/двоичныйпакет
в двоичныйпакет.
См. dh_installemacsen(1).

binarypackage.examples -x1 Содержит список файлов или каталогов с примерами для их
установки в usr/share/doc/двоичныйпакет/examples/ в двоичныйпакет.
См. dh_installexamples(1).

47

file:///usr/share/doc/doc-base/doc-base.html/index.html

ГЛАВА 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

gbp.conf -x1 Если этот файл существует, то он используется как файл настройки для коман-
ды gbp.
См. gbp.conf(5), gbp(1) и git-buildpackage(1).

binarypackage.info -x1 Содержит список info-файлов для их установки в двоичныйпакет.
См. dh_installinfo(1).

binarypackage.init -x4 Installed into etc/init.d/binarypackage in binarypackage. (deprecated)
См. dh_installinit(1).

binarypackage.install -x1 Содержит список файлов, которые должны быть установлены, но
не устанавливаются командой dh_auto_install.
См. dh_install(1) и dh_auto_install(1).

binarypackage.links -x1 List pairs of source and destination files to be symlinked. Each pair should
be put on its own line, with the source and destination separated by whitespace.
См. dh_link(1).

двоичныйпакет.lintian-overrides -x3 Устанавливается в usr/share/lintian/overrides/двоичныйпакет
в каталоге сборки пакета. Этот файл используется для блокировки ошибочных диагно-
стических процедур lintian.
См. dh_lintian(1), lintian(1) и «Руководство пользователя Lintian».

binarypackage.maintscript -x2 If this optional file exists, debhelper uses this as the template to
generate DEBIAN/binarypackage.{pre,post}{inst,rm} files within the binary package while
adding «-- ”$@”» to the dpkg-maintscript-helper(1) command.
See dh_installdeb(1) and «Chapter 6 - Package maintainer scripts and installation procedure»
in the «Debian Policy Manual».

manpage.* -x3 Команда debmake создаёт шаблонные файы страниц руководства. Переиме-
нуйте эти файлы соответствующим образом и обновите их содержимое.
Debian Policy requires that each program, utility, and function should have an associated
manual page included in the same package. Manual pages are written in nroff(1). If you are
new to making a manpage, use manpage.asciidoc or manpage.1 as the starting point.

binarypackage.manpages -x1 Содержит список страниц руководства для их установки.
См. dh_installman(1).

двоичныйпакет.menu (устарел, более не устанавливается) tech-ctte #741573 decided «Debian
should use .desktop files as appropriate».
Файл меню Debian устанавливается в usr/share/menu/двоичныйпакет в двоичныйпа-
кет.
Информацию о формате см. в menufile(5). См. dh_installmenu(1).

NEWS -x3 Устанавливается в usr/share/doc/двоичныйпакет/NEWS.Debian.
См. dh_installchangelogs(1).

patches/* Набор файлов заплат -p1, которые применяются к исходному коде основной ветки
до запуска процесса сборки исходного кода.
Команда debmake не создаёт файлы заплат.
См. dpkg-source(1), «Раздел 4.4» и «Раздел 5.9».

patches/series -x1 Последовательность применения файлов заплат patches/*.
двоичныйпакет.preinst -x2, двоичныйпакет.postinst -x2, двоичныйпакет.prerm -x2, двоичныйпакет.postrm -x2

If these optional files exist, the corresponding files are installed into the DEBIAN directory
within the binary package after enriched by debhelper. Otherwise, these files in the DEBIAN
directory within the binary package is generated by debhelper.
Whenever possible, simpler binarypackage.maintscript should be used instead.
See dh_installdeb(1) and «Chapter 6 - Package maintainer scripts and installation procedure»
in the «Debian Policy Manual».
See also debconf-devel(7) and «3.9.1 Prompting in maintainer scripts» in the «Debian Policy
Manual».

48

https://lintian.debian.org/manual/index.html
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://bugs.debian.org/741573
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts

ГЛАВА 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

README.Debian -x1 Устанавливается в первый двоичный пакет, указанный в файле debian/control
как usr/share/doc/двоичныйпакет/README.Debian.
Этот файл содержит специальную информацию о пакете Debian.
См. dh_installdocs(1).

README.source -x1 Installed into the first binary package listed in the debian/control file as
usr/share/doc/binarypackage/README.source.
If running «dpkg-source -x» on a source package doesn’t produce the source of the package,
ready for editing, and allow one to make changes and run dpkg-buildpackage to produce a
modified package without taking any additional steps, creating this file is recommended.
See «Debian policy manual section 4.14».

двоичныйпакет.service -x3 Если этот файл существует, то он устанавливается в lib/systemd/system/двоичныйпакет.service
в binarypackage.
См. dh_systemd_enable(1), dh_systemd_start(1) и dh_installinit(1).

source/format -x1 Формат пакета Debian.
– Use «3.0 (quilt)» to make this non-native package (recommended)
– Use «3.0 (native)» to make this native package

See «SOURCE PACKAGE FORMATS» in dpkg-source(1).
source/lintian-overrides -x3 These file is not installed, but are scanned by the lintian command

to provide overrides for the source package.
См. dh_lintian(1) и lintian(1).

source/local-options -x1 The dpkg-source command uses this content as its options. Notable
options are:

– unapply-patches
– abort-on-upstream-changes
– auto-commit
– single-debian-patch

Этот файл не добавляется в создаваемый пакет с исходным кодом и предназначен ско-
рее для добавления в систему управления версиями, используемую сопровождающим.
See «FILE FORMATS» in dpkg-source(1).

source/local-patch-header -x1 Свободная текстовая форма, размещаемая в верхней части
автоматически созданной заплаты.
Этот файл не добавляется в создаваемый пакет с исходным кодом и предназначен ско-
рее для добавления в систему управления версиями, используемую сопровождающим.
See «FILE FORMATS» in dpkg-source(1).

source/options -x3 Use source/local-options instead to avoid issues with NMUs. See «FILE
FORMATS» in dpkg-source(1).

source/patch-header -x4 Use source/local-patch-header instead to avoid issues with NMUs.
See «FILE FORMATS» in dpkg-source(1).

binarypackage.symbols -x1 Файлы символов. Если эти файлы существуют, то они будут пе-
реданы для обработки и установки команде dpkg-gensymbols.
См. dh_makeshlibs(1) и «Раздел 10.16»..

binarypackage.templates -x3 Это файл шаблонов для debconf. Он используется для выво-
да вопросов, необходимых для настройки пакета. См. «Раздел 10.22».

tests/control -x1 This is the RFC822-style test meta data file defined in DEP-8. See autopkgtest(1)
and «Раздел 10.4».

TODO -x3 Устанавливается в первый двоичный пакет, указанный в файле debian/control как
usr/share/doc/двоичныйпакет/TODO.Debian.
См. dh_installdocs(1).

двоичныйпакет.tmpfile -x3 Если этот файл существует, то он устанавливается в usr/lib/tmpfiles.d/двоичныйпакет.conf
в двоичныйпакет.
См. dh_systemd_enable(1), dh_systemd_start(1) и dh_installinit(1).

49

https://www.debian.org/doc/debian-policy/ch-source.html#source-package-handling-debian-readme-source
https://dep-team.pages.debian.net/deps/dep8/

ГЛАВА 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

binarypackage.upstart -x4 If this exists, it is installed into etc/init/package.conf in the package
build directory. (deprecated)
См. dh_installinit(1).

upstream/metadata -x1 Per-package machine-readable metadata about upstream (DEP-12). See
«Upstream MEtadata GAthered with YAml (UMEGAYA)».

50

https://dep-team.pages.debian.net/deps/dep12/
https://wiki.debian.org/UpstreamMetadata

Глава 7

Quality of packaging

The quality of Debian packaging can be improved by using testing tools.

• lintian(1)

• piuparts(1)

If you follow «Глава 4», these are automatically executed. You are expected to fix all warnings.

7.1 Reformat debian/* files with wrap-and-sort
It is good idea to reformat debian/* files consistently using the wrap-and-sort(1) command in devscripts
package.

Reformat debian/* files

$ wrap-and-sort -vast

7.2 Validate debian/* files with debputy
The new debputy tool 1 includes subcommands to validate (and fix) most files in debian/*.

Check correctness of files in debian/*

$ debputy lint --spellcheck

Format debian/control and debian/tests/control files

$ debputy reformat --style black

Using the «debputy reformat» command obsoletes using «wrap-and-sort -vast».
The debputy tool also includes a language server. You can set up to get real-time feedback while

editing debian/* files with any modern editor supporting the Language Server Protocol.

1The main purpose of the debputy tool is to offer a new Debian package build paradigm. This new paradigm is beyond the
scope of this tutorial.

51

https://manpages.debian.org/unstable/dh-debputy/debputy.1.en.html
https://en.wikipedia.org/wiki/Language_Server_Protocol

Глава 8

Sanitization of the source

There are a few cases that require sanitizing the source to prevent contamination of the generated Debian
source package.

• Non-https://www.debian.org/social_contract.html#guidelines[DFSG] compliant content in the upstream
source.

– Debian takes software freedom seriously and adheres to the DFSG.

• Extraneous auto-generated content in the upstream source.

– Debian packages should rebuild these under the latest system.

• Extraneous VCS content in the upstream source.

– The -i and -I options set in «Раздел 4.5» for the dpkg-source(1) command should avoid
these.

* The -i option is intended for non-native Debian packages.
* The -I option is intended for native Debian packages.

There are several methods to avoid including undesirable content.

8.1 Fix with Files-Excluded
This method is suitable for avoiding non-https://www.debian.org/social_contract.html#guidelines[DFSG]
compliant content in the upstream source tarball.

• Укажите список файлов для удаления в строке Files-Excluded файла debian/copyright.

• Укажите URL для загрузки tar-архива основной ветки в файле debian/watch.

• Запустите команду uscan для загрузки нового tar-архива основной ветки.

– Alternatively, use the «gbp import-orig --uscan --pristine-tar» command.

• mk-origtargz invoked from uscan removes excluded files from the upstream tarball and repack it
as a clean tarball.

• Получившийся tar-архив будет иметь версию с дополнительным суффиком +dfsg.

See «COPYRIGHT FILE EXAMPLES» in mk-origtargz(1).

52

https://www.debian.org/social_contract.html#guidelines

ГЛАВА 8. SANITIZATION OF THE SOURCE 8.2. FIX WITH «DEBIAN/RULES CLEAN»

8.2 Fix with «debian/rules clean»
This method is suitable for avoiding auto-generated files by removing them in the ”debian/rules clean”
target.

Замечание

The ”debian/rules clean” target is called before the ”dpkg-source --build”
command by the dpkg-buildpackage command. The ”dpkg-source --build”
command ignores removed files.

8.3 Fix with extend-diff-ignore
This is for the non-native Debian package.

The problem of extraneous diffs can be fixed by ignoring changes made to specific parts of the source
tree. This is done by adding the ”extend-diff-ignore=… ” line in the debian/source/options file.

debian/source/options to exclude the config.sub, config.guess and Makefile files:
Don't store changes on autogenerated files
extend-diff-ignore = "(^|/)(config\.sub|config\.guess|Makefile)$"

Замечание

This approach always works, even when you can’t remove the file. It saves you
from having to make a backup of the unmodified file just to restore it before the
next build.

Подсказка

If you use the debian/source/local-options file instead, you can hide this setting
from the generated source package. This may be useful when local non-standard
VCS files interfere with your packaging.

8.4 Fix with tar-ignore
This is for the native Debian package.

You can exclude certain files in the source tree from the generated tarball by adjusting the file glob.
Add the ”tar-ignore=… ” lines in the debian/source/options or debian/source/local-options files.

Замечание

For example, if the source package of a native package needs files with
the .o extension as part of the test data, the setting in «Раздел 4.5» may
be too aggressive. You can work around this by dropping the -I option for
DEBUILD_DPKG_BUILDPACKAGE_OPTS in «Раздел 4.5» and adding the
”tar-ignore=… ” lines in the debian/source/local-options file for each package.

53

ГЛАВА 8. SANITIZATION OF THE SOURCE 8.5. FIX WITH «GIT CLEAN -DFX»

8.5 Fix with «git clean -dfx»
The problem of extraneous content in the second build can be avoided by restoring the source tree. This
is done by committing the source tree to the Git repository before the first build.

You can restore the source tree before the second package build. For example:

$ git reset --hard
$ git clean -dfx

This works because the dpkg-source command ignores the contents of typical VCS files in the source
tree, as specified by the DEBUILD_DPKG_BUILDPACKAGE_OPTS setting in «Раздел 4.5».

Подсказка

If the source tree is not managed by a VCS, run ”git init; git add -A .; git commit”
before the first build.

54

Глава 9

More on packaging

Let’s explore more fundamentals of Debian packaging.

9.1 Package customization
All customization data for the Debian source package resides in the debian/ directory as presented in
«Раздел 5.7»:

• The Debian package build system can be customized through the debian/rules file (see «Раз-
дел 9.2»).

• The Debian package installation path etc. can be customized through the addition of configuration
files such as package.install and package.docs in the debian/ directory for the dh_* commands
from the debhelper package (see «Раздел 6.14»).

When these are not sufficient to make a good Debian package, -p1 patches of debian/patches/*
files are deployed to modify the upstream source. These are applied in the sequence defined in the
debian/patches/series file before building the package as presented in «Раздел 5.9».

You should address the root cause of the Debian packaging problem in the least invasive way possible.
This approach will make the generated package more robust for future upgrades.

Замечание

If the patch addressing the root cause is useful to the upstream project, send it
to the upstream maintainer.

9.2 Customized debian/rules
Flexible customization of the Раздел 6.5 is achieved by adding appropriate override_dh_* targets and
their rules.

When a special operation is required for a certain dh_foo command invoked by the dh command, its
automatic execution can be overridden by adding the makefile target override_dh_foo in the debian/rules
file.

The build process may be customized via the upstream provided interface such as arguments to the
standard source build system commands, such as:

• configure,

• Makefile,

• «python -m build», or

• Build.PL.

55

ГЛАВА 9. MORE ON PACKAGING 9.3. VARIABLES FOR DEBIAN/RULES

In this case, you should add the override_dh_auto_build target with «dh_auto_build -- arguments».
This ensures that arguments are passed to the build system after the default parameters that dh_auto_build
usually passes.

Подсказка

Avoid executing bare build system commands directly if they are supported by
the dh_auto_build command.

См.:

• «Раздел 5.7» for the basic example.

• «Раздел 10.3» to be reminded of the challenge involving the underlying build system.

• «Раздел 10.10» for multiarch customization.

• «Раздел 10.6» for hardening customization.

9.3 Variables for debian/rules
Некоторые определения переменных, которые могут оказаться полезными для debian/rules, мож-
но найти в файлах в каталоге /usr/share/dpkg/. В частности:

pkg-info.mk Set DEB_SOURCE, DEB_VERSION, DEB_VERSION_EPOCH_UPSTREAM, DEB_VERSION_UPSTREAM_REVISION,
DEB_VERSION_UPSTREAM, and DEB_DISTRIBUTION variables obtained from dpkg-parsechangelog(1).
(useful for backport support etc..)

vendor.mk Set DEB_VENDOR and DEB_PARENT_VENDOR variables; and dpkg_vendor_derives_from
macro obtained from dpkg-vendor(1). (useful for vendor support (Debian, Ubuntu, …).)

architecture.mk Set DEB_HOST_* and DEB_BUILD_* variables obtained from dpkg-architecture(1).

buildflags.mk Set CFLAGS, CPPFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS,
FFLAGS, FCFLAGS, and LDFLAGS build flags obtained from dpkg-buildflags(1).

For example, you can add an extra option to CONFIGURE_FLAGS for linux-any target architectures
by adding the following to debian/rules:

DEB_HOST_ARCH_OS ?= $(shell dpkg-architecture -qDEB_HOST_ARCH_OS)
...
ifeq ($(DEB_HOST_ARCH_OS),linux)
CONFIGURE_FLAGS += --enable-wayland
endif

См. «Раздел 10.10», dpkg-architecture(1) и dpkg-buildflags(1).

9.4 Новый выпуск основной ветки
When a new upstream release tarball foo-newvwesion.tar.gz is released, the Debian source package
can be updated by invoking commands in the old source tree as:

$ uscan
... foo-newversion.tar.gz downloaded
$ uupdate -v newversion ../foo-newversion.tar.gz

• The debian/watch file in the old source tree must be a valid one.

• This make symlink ../foo_newvwesion.orig.tar.gz pointing to ../foo-newvwesion.tar.gz.

56

ГЛАВА 9. MORE ON PACKAGING 9.5. MANAGE PATCH QUEUE WITH DQUILT

• Files are extracted from ../foo-newvwesion.tar.gz to ../foo-newversion/

• Files are copied from ../foo-oldversion/debian/ to ../foo-newvesion/debian/ .

After the above, you should refresh debian/patches/* files (see «Раздел 9.5») and update debian/changelog
with the dch(1) command.

When «debian uupdate» is specified at the end of line in the debian/watch file, uscan automatically
executes uupdate(1) after downloading the tarball.

9.5 Manage patch queue with dquilt
You can add, drop, and refresh debian/patches/* files with dquilt to manage patch queue.

• Add a new patch debian/patches/bugname.patch recording the upstream source modification on
the file buggy_file as:

$ dquilt push -a
$ dquilt new bugname.patch
$ dquilt add buggy_file
$ vim buggy_file
...

$ dquilt refresh
$ dquilt header -e
$ dquilt pop -a

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make «dpkg-source -b» work as expected after updating a
Debian package to the new upstream release.

$ uscan; uupdate # updating to the new upstream release
$ while dquilt push; do dquilt refresh ; done
$ dquilt pop -a

– If conflicts are encountered with «dquilt push» in the above, resolve them and run «dquilt
refresh» manually for each of them.

9.6 Build commands
Here is a recap of popular low level package build commands. There are many ways to do the same
thing.

• dpkg-buildpackage = ядро инструмента для сборки пакета

• debuild = dpkg-buildpackage + lintian (сборка с очищенными переменными окружения)

• schroot = core of the Debian chroot environment tool

• sbuild = dpkg-buildpackage on custom schroot (build in the chroot)

9.7 Note on sbuild
The sbuild(1) command is a wrapper script of dpkg-buildpackage which builds Debian binary packages
in a chroot environment managed by the schroot(1) command. For example, building for Debian unstable
suite can be done as:

$ sudo sbuild -d unstable

57

ГЛАВА 9. MORE ON PACKAGING 9.8. SPECIAL BUILD CASES

In schroot(1) terminology, this builds a Debian package in a clean ephemeral chroot «chroot:unstable-
amd64-sbuild» started as a copy of the clean minimal persistent chroot «source:unstable-amd64-
sbuild».

This build environment was set up as described in «Раздел 4.6» with «sbuild-debian-developer-
setup -s unstable» which essentially did the following:

$ sudo mkdir -p /srv/chroot/dist-amd64-sbuild
$ sudo sbuild-createchroot unstable /srv/chroot/unstable-amd64-sbuild http://deb ←↩

.debian.org/debian
$ sudo usermod -a -G sbuild <your_user_name>
$ sudo newgrp -

The schroot(1) configuration for unstable-amd64-sbuild was generated at /etc/schroot/chroot.d/unstable-
amd64-sbuild.$suffix :

[unstable-amd64-sbuild]
description=Debian sid/amd64 autobuilder
groups=root,sbuild
root-groups=root,sbuild
profile=sbuild
type=directory
directory=/srv/chroot/unstable-amd64-sbuild
union-type=overlay

Где:

• The profile defined in the /etc/schroot/sbuild/ directory is used to setup the chroot environment.

• /srv/chroot/unstable-amd64-sbuild directory holds the chroot filesystem.

• /etc/sbuild/unstable-amd64-sbuild is symlinked to /srv/chroot/unstable-amd64-sbuild .

You can update this source chroot «source:unstable-amd64-sbuild» by:

$ sudo sbuild-update -udcar unstable

You can log into this source chroot «source:unstable-amd64-sbuild» by:

$ sudo sbuild-shell unstable

Подсказка

If your source chroot filesystem is missing packages such as libeatmydata1,
ccache, and lintian for your needs, you may want to install these by logging into
it.

9.8 Special build cases
The orig.tar.gz file may need to be uploaded for a Debian revision other than 0 or 1 under some
exceptional cases (e.g., for a security upload).

When an essential package becomes a non-essential one (e.g., adduser), you need to remove it
manually from the existing chroot environment for its use by piuparts.

9.9 Загрузите orig.tar.gz
При первой загрузке пакета в архив вам следует включить в загрузку также и архив с оригинальным
исходным кодом, orig.tar.gz.

Если номер редакции Debian вашего пакета не является 1 или 0, то это происходит по умолча-
нию. В противном случае, вам следует передать опцию -sa команде dpkg-buildpackage.

58

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot

ГЛАВА 9. MORE ON PACKAGING 9.10. ПРОПУЩЕННЫЕ ЗАГРУЗКИ

• dpkg-buildpackage -sa

• debuild -sa

• sbuild

• For «gbp buildpackage», edit the ~/.gbp.conf file.

Подсказка

С другой стороны использование опции -sd приведёт к тому, что архив с
оригинальным исходным кодом, orig.tar.gz, будет включён в загрузку.

Подсказка

Security uploads require including the orig.tar.gz file.

9.10 Пропущенные загрузки
Если вы создаёте несколько записей в файле debian/changelog и пропускаете загрузки, то вам
следует создать соответствующий файл *_.changes, включающий все изменения с последней за-
грузки. Это можно сделать, передав dpkg-buildpackage опцию -v с указанием последней загружен-
ной версии, например, 1.2.

• dpkg-buildpackage -v1.2

• debuild -v1.2

• sbuild --debbuildopts -v1.2

• При использовании gbp buildpackage отредактируйте файл ~/.gbp.conf.

9.11 Bug reports
The reportbug(1) command used for the bug report of binarypackage can be customized by the files in
usr/share/bug/binarypackage/.

Команда dh_bugfiles устанавливает эти файлы из шаблонных файлов в каталоге debian/.

• debian/двоичныйпакет.bug-control → usr/share/bug/двоичныйпакет/control

– Этот файл содержит некоторые указания, такие как перенаправления отчёта об ошибке
другому пакету.

• debian/двоичныйпакет.bug-presubj → usr/share/bug/двоичныйпакет/presubj

– Этот файл отображается пользователю с помощью команды reportbug.

• debian/двоичныйпакет.bug-script → usr/share/bug/двоичныйпакет или usr/share/bug/двоичныйпакет/script

– Команда reportbug запускает этот сценарий для создания шаблонного файла для от-
чёта об ошибке.

59

ГЛАВА 9. MORE ON PACKAGING 9.11. BUG REPORTS

See dh_bugfiles(1) and «reportbug’s Features for Developers (README.developers)»

Подсказка

If you always remind the bug reporter of something or ask them about their
situation, use these files to automate it.

60

file:///usr/share/doc/reportbug/README.developers.gz

Глава 10

Продвинутые темы работы над
пакетом

Let’s describe advanced topics on Debian packaging.

10.1 Historical perspective
Let me oversimplify historical perspective of Debian packaging practices focused on the non-native
packaging.

Debian was started in 1990s when upstream packages were available from public FTP sites such
as Sunsite. In those early days, Debian packaging used Debian source format currently known as the
Debian source format «1.0»:

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.gz : symlink to or copy of the upstream released file.
– package_version-revision.diff.gz : «One big patch» for Debian modifications.
– package_version-revision.dsc : package description.

• Several workaround approaches such as dpatch, dbs, or cdbs were deployed to manage multiple
topic patches.

The modern Debian source format «3.0 (quilt)» was invented around 2008 (see «ProjectsDebSrc3.0»):

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.?z : symlink to or copy of the upstream released file.
– package_version-revision.debian.tar.?z : tarball of debian/ for Debian modifications.

* The debian/source/format file contains «3.0 (quilt)».
* Optional multiple topic patches are stored in the debian/patches/ directory.

– package_version-revision.dsc : package description.

• The standardized approach to manage multiple topic patches using quilt(1) is deployed for the
Debian source format «3.0 (quilt)».

Most Debian packages adopted the Debian source formats «3.0 (quilt)» and «3.0 (native)».
Now, the git(1) is popular with upstream and Debian developers. The git and its associated tools

are important part of the modern Debian packaging workflow. This modern workflow involving git will be
mentioned later in «Глава 11».

61

https://www.debian.org/doc/manuals/project-history/index.en.html
https://en.wikipedia.org/wiki/Sunsite
https://wiki.debian.org/Projects/DebSrc3.0

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.2. CURRENT TRENDS

10.2 Current trends
Current Debian packaging practices and their trends are moving target. See:

• «Debian Trends» — Hints for «De facto standard» of Debian practices

– Build systems: dh
– Debian source format: «3.0 (quilt)»
– VCS: git
– VCS Hosting: salsa
– Rules-Requires-Root: adopted, fakeroot
– Copyright format: DEP-5

• «debhelper-compat-upgrade-checklist(7) manpage» — Upgrade checklist for debhelper

• «DEP - Debian Enhancement Proposals» — Formal proposals to enhance Debian

You can also search entire Debian source code data by yourself, too.

• «Debian Sources» — code search tool

– «Debian Code Search» — wiki page describing its usage

• «Debian Code Search» — another code search tool

10.3 Note on build system
Auto-generated files of the build system may be found in the released upstream tarball. These should
be regenerated when Debian package is build. E.g.:

• «dh $@ --with autoreconf» should be used in the debian/rules if Autotools (autoconf + automake)
are used.

Some modern build system may be able to download required source codes and binary files from
arbitrary remote hosts to satisfy build requirements. Don’t use this download feature. The official Debian
package is required to be build only with packages listed in Build-Depends: of the debian/control file.

10.4 Непрерывная интеграция
The dh_auto_test(1) command is a debhelper command that tries to automatically run the test suite
provided by the upstream developer during the Debian package building process.

The autopkgtest(1) command can be used after the Debian package building process. It tests generated
Debian binary packages in the virtual environment using the debian/tests/control RFC822-style metadata
file as continuous integration (CI). See:

• Documents in the /usr/share/doc/autopkgtest/ directory

• «4. autopkgtest: Automatic testing for packages» of the «Ubuntu Packaging Guide»

Кроме того, в Debian существует ещё несколько других инструментов непрерывной интеграции.

• The Salsa offers «Раздел 11.3».

• The debci package: CI platform on top of the autopkgtest package

• Пакет jenkins: платформа непрерывной интеграции общего назначения

62

https://trends.debian.net/
https://salsa.debian.org/
https://dep-team.pages.debian.net/deps/dep5/
https://dep-team.pages.debian.net/
https://sources.debian.org/
https://wiki.debian.org/DebianCodeSearch
https://dcs.zekjur.net/
https://en.wikipedia.org/wiki/Continuous_integration
https://packaging.ubuntu.com/html/auto-pkg-test.html
https://salsa.debian.org

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.5. ПРЕДЗАГРУЗКА

10.5 Предзагрузка
Debian cares about supporting new ports or flavours. The new ports or flavours require bootstrapping
operation for the cross-build of the initial minimal native-building system. In order to avoid build-dependency
loops during bootstrapping, the build-dependency needs to be reduced using the DEB_BUILD_PROFILES
environment variable.

See Debian wiki: «BuildProfileSpec».

Подсказка

If a core package foo build depends on a package bar with deep build
dependency chains but bar is only used in the test target in foo, you can safely
mark the bar with <!nocheck> in the Build-depends of foo to avoid build loops.

10.6 Усиление безопасности компилятора
The compiler hardening support spreading for Debian jessie (8.0) demands that we pay extra attention
to the packaging.

Вам следует подробно изнакомиться со следующей справочной документацией:

• Debian wiki: «Hardening»

• Debian wiki: «Hardening Walkthrough»

Команда debmake добавляет шаблонные комментарии в файл debian/rules, требующиеся для
DEB_BUILD_MAINT_OPTIONS, DEB_CFLAGS_MAINT_APPEND и DEB_LDFLAGS_MAINT_APPEND
(см. «Глава 5» и dpkg-buildflags(1)).

10.7 Повторяемая сборка
Here are some recommendations to attain a reproducible build result.

• Не включайте в результат временную метку на основе системного времени.

• Don’t embed the file path of the build environment.

• Use «dh $@» in the debian/rules to access the latest debhelper features.

• Export the build environment as «LC_ALL=C.UTF-8» (see «Раздел 12.1»).

• Set the timestamp used in the upstream source from the value of the debhelper-provided environment
variable $SOURCE_DATE_EPOCH.

• Подробности можно найти на вики-странице «ReproducibleBuilds».

– «Руководство ReproducibleBuilds».
– «ReproducibleBuilds TimestampsProposal».

Reproducible builds are important for security and quality assurance. They allow independent verification
that no vulnerabilities or backdoors have been introduced during the build process.

Управляющий файл имя-исходного-кода_версия-исходного-кода_архитектура.buildinfo, со-
здаваемый dpkg-genbuildinfo(1), содержит информацию о сборочном окружении. См. deb-buildinfo(5)

63

https://wiki.debian.org/DebianBootstrap
https://wiki.debian.org/BuildProfileSpec
https://wiki.debian.org/Hardening
https://wiki.debian.org/HardeningWalkthrough
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds/Howto
https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.8. ПЕРЕМЕННЫЕ ПОДСТАНОВКИ

10.8 Переменные подстановки
Кроме того, файл debian/control определяет зависимости пакета, в которых может исопльзовать-
ся «механизм подстановки переменных» (substvar), который освобождает сопровождающих па-
кета от рутинной работы по отслеживанию большинства простых зависимостей пакета. См. deb-
substvars(5).

The debmake command supports the following substvars:

• ${misc:Depends} для всех двоичных пакетов

• ${misc:Pre-Depends} для всех мультиархитектурных пакетов

• ${shlibs:Depends} для всех двоичных пакетов с исполняемыми файлами и пакетов библио-
тек

• ${python:Depends} для всех пакетов с кодом на языке Python

• ${python3:Depends} для всех пакетов с кодом на языке Python3

• ${perl:Depends} для всех пакетов с кодом на языке Perl

• ${ruby:Depends} для всех пакетов с кодом на языке Ruby

For the shared library, required libraries found simply by «objdump -p /path/to/program | grep NEEDED»
are covered by the shlib substvar.

For Python and other interpreters, required modules found simply looking for lines with «import»,
«use», «require», etc., are covered by the corresponding substvars.

Для остальных программ, не использующих собственные переменные подстановки, зависимо-
сти обрабатываются переменной misc.

Для программ командной оболочки POSIX нет простого способа определения зависимостей,
поэтому их зависимости не обрабатываются никакой переменной.

Для библиотек и модулей, требующихся через механизм динамической загрузки, включая ме-
ханизм «GObject-интроспекция», нет простого способа определения зависимостей, поэтому их за-
висимости не обрабатываются никакой переменной.

10.9 Пакет библиотеки
Packaging library software requires you to perform much more work than usual. Here are some reminders
for packaging library software:

• The library binary package must be named as in «Раздел 10.17».

• Debian ships shared libraries such as /usr/lib/<triplet>/libfoo-0.1.so.1.0.0 (see «Раздел 10.10»).

• Debian encourages using versioned symbols in the shared library (see «Раздел 10.16»).

• Debian не поставляет libtool-архивы библиотек *.la.

• Debian discourages using and shipping *.a static library files.

Before packaging shared library software, see:

• «Chapter 8 - Shared libraries» of the «Debian Policy Manual»

• «10.2 Libraries» of the «Debian Policy Manual»

• «6.7.2. Libraries» of the «Debian Developer’s Reference»

Для получения исторических сведений обратитесь к следующей документации:

• «Спасение из ада зависимостей» 1

– This encourages having versioned symbols in the shared library.
1Этот документ был написан до появления файла symbols.

64

https://www.debian.org/doc/debian-policy/ch-source.html#s-substvars
https://wiki.gnome.org/Projects/GObjectIntrospection
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html
https://www.debian.org/doc/debian-policy/ch-files.html#libraries
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-libraries
https://debconf4.debconf.org/talks/dependency-hell/img1.html

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.10. MULTIARCH

• «Debian Library Packaging guide» 2

– Please read the discussion thread following its announcement, too.

10.10 Multiarch
Multiarch support for cross-architecture installation of binary packages (particularly i386 and amd64, but
also other combinations) in the dpkg and apt packages introduced in Debian wheezy (7.0, May 2013),
demands that we pay extra attention to packaging.

Вам следует подробно изнакомиться со следующей справочной документацией:

• Ubuntu вики (основная ветка разработки)

– «MultiarchSpec»

• Debian вики (ситуация в Debian)

– «Поддержка мультиархитектурности в Debian»
– «Multiarch/Implementation»

Мультиархитектурность включается с помощью значения <тройки> вида i386-linux-gnu или
x86_64-linux-gnu в пути установки разделяемых библиотек вида /usr/lib/<тройка>/ и т. д.

• Значение <тройки>, внутренне необходимое для сценариев debhelper, устанавливается са-
мими сценариями неявно. Сопровождающему не нужно об этом беспокоиться.

• The <triplet> value used in override_dh_* target scripts must be explicitly set in the debian/rules
file by the maintainer. The <triplet> value is stored in the $(DEB_HOST_MULTIARCH) variable in
the following debian/rules snippet example:
DEB_HOST_MULTIARCH = $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)
...
override_dh_install:
mkdir -p package1/lib/$(DEB_HOST_MULTIARCH)
cp -dR tmp/lib/. package1/lib/$(DEB_HOST_MULTIARCH)

См.:

• «Раздел 9.3»

• «Раздел 16.2»

• «Раздел 10.12»

• «dpkg-architecture(1) manpage»

10.11 Split of a Debian binary package
For well behaving build systems, the split of a Debian binary package into small ones can be realized as
follows.

• Создайте записи с определениями метаданных двоичных пакетах в файле debian/control
для всех двоичных пакетов.

• Укажите все пути к файлам (относительно каталга debian/tmp) в соответствующих файлах
debian/двоичныйпакет.install.

С примерами можно ознакомиться в настоящем руководстве:

• «Раздел 14.11» (на основе Autotools)

• «Раздел 14.12» (на основе CMake)

An intuitive and flexible method to create the initial template debian/control file defining the split of
the Debian binary packages is accommodated with the -b option. See «Раздел 16.2».

2The strong preference is to use the SONAME versioned -dev package names over the single -dev package name in «Chapter
6. Development (-DEV) packages», which does not seem to be shared by the former ftp-master (Steve Langasek). This document
was written before the introduction of the multiarch system and the symbols file.

65

https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
https://lists.debian.org/debian-devel/2004/06/msg00069.html
https://wiki.ubuntu.com/MultiarchSpec
https://wiki.debian.org/Multiarch
https://wiki.debian.org/Multiarch/Implementation
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.12. СЦЕНАРИИ И ПРИМЕРЫ …

10.12 Сценарии и примеры разделения пакета
Ниже приводится несколько типичных сценариев разделения мультиархитектурного пакета для
следующих примеров исходного кода основной ветки разработки, в которых используется команда
debmake:

• исходный код библиотеки libfoo-1.0.tar.gz

• исходный код утилиты bar-1.0.tar.gz, написанный на компилируемом языке

• исходный код утилиты baz-1.0.tar.gz, написанный на интерпретируемом языке

двоичныйпакеттип Architecture: Multi-
Arch:

Содержимое пакета

libfoo1 lib* any same разделяемая бибиотека, возможна
совместная установка

libfoo-dev dev* any same заголовочные файлы разделяемой
библиотеки и проч., возможна
совместная установка

libfoo-tools bin* any foreign программы с поддержкой времени
исполнения, совместная установка
невозможна

libfoo-doc doc* all foreign файлы документации разделяемой
библиотеки

bar bin* any foreign скомпилированный файлы
программы, совместная устанвка
невозможна

bar-doc doc* all foreign файлы документации программы
baz script all foreign файлы интерпретируемой

программы

10.13 Multiarch library path
Debian policy requires to comply with the «Filesystem Hierarchy Standard (FHS), version 3.0», with the
exceptions noted in «File System Structure».

The most notable exception is the use of /usr/lib/<triplet>/ instead of /usr/lib<qual>/ (e.g., /lib32/
and /lib64/) to support a multiarch library.

Таблица 10.2 Опции путя мультиархитектурных библиотек
Классический путь Мультиархитектурный путь

для i386
Мультиархитектуный путь
для amd64

/lib/ /lib/i386-linux-gnu/ /lib/x86_64-linux-gnu/
/usr/lib/ /usr/lib/i386-linux-gnu/ /usr/lib/x86_64-linux-gnu/

Для пакетов на основе Autotools, в которых используется пакет debhelper с (compat>=9), уста-
новка этого пути выполняется автоматически с помощью команды dh_auto_configure.

При работе с другими пакетами, использующими неподдерживаемые системы сборки, вам сле-
дует вручную изменить путь установки указанным ниже способом.

• If «./configure» is used in the override_dh_auto_configure target in debian/rules, make sure to
replace it with «dh_auto_configure --» while re-targeting the install path from /usr/lib/ to /usr/lib/$(DEB_HOST_MULTIARCH)/.

• Замените все пути с /usr/lib/ на /usr/lib/*/ в файлах debian/foo.install.

All files installed simultaneously as the multiarch package to the same file path should have exactly
the same file content. You must be careful with differences generated by the data byte order and by the
compression algorithm.

Файлы разделяемых библиотек, расположенные в каталогах по умолчанию, /usr/lib/ и /usr/lib/<тройка>/,
загружаются автоматически.

66

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#file-system-structure

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.14. MULTIARCH HEADER FILE PATH

For shared library files in another path, the GCC option -l must be set by the pkg-config command
to make them load properly.

10.14 Multiarch header file path
В мультиархитектурной системе Debian GCC по умолчанию включает и /usr/include/, и /usr/include/<тройка>/.

If the header file is not in those paths, the GCC option -I must be set by the pkg-config command to
make ”#include <foo.h>” work properly.

Таблица 10.3 Опции пути мультиархитектурного заголовочного файла
Классический путь Мультиархитектурный путь

для i386
Мультиархитектуный путь
для amd64

/usr/include/ /usr/include/i386-linux-gnu/ /usr/include/x86_64-linux-gnu/
/usr/include/имяпакета//usr/include/i386-linux-

gnu/имяпакета/
/usr/include/x86_64-linux-
gnu/имяпакета/

/usr/lib/i386-linux-
gnu/имяпакета/

/usr/lib/x86_64-linux-
gnu/имяпакета/

The use of the /usr/lib/<triplet>/packagename/ path for the library files allows the upstream maintainer
to use the same install script for the multiatch system with /usr/lib/<triplet> and the biarch system with
/usr/lib<qual>/. 3

The use of the file path containing packagename enables having more than 2 development libraries
simultaneously installed on a system.

10.15 Multiarch *.pc file path
Программа pkg-config используется для получения информации об установленных в системе
библиотеках. Она сохраняет свои параметры настройки в файле *.pc и используется для уста-
новки опций -I и -l для GCC.

Таблица 10.4 Опции пути к файлу *.pc
Классический путь Мультиархитектурный путь

для i386
Мультиархитектуный путь
для amd64

/usr/lib/pkgconfig/ /usr/lib/i386-linux-
gnu/pkgconfig/

/usr/lib/x86_64-linux-
gnu/pkgconfig/

10.16 Библиотека символов
The symbols support in dpkg introduced in Debian lenny (5.0, May 2009) helps us to manage the
backward ABI compatibility of the library package with the same package name. The DEBIAN/symbols
file in the binary package provides the minimal version associated with each symbol.

An oversimplified method for the library packaging is as follows.

• Extract the old DEBIAN/symbols file of the immediate previous binary package with the «dpkg-
deb -e» command.

– Либо можно использовать команду mc для распаковки файла DEBIAN/symbols.

• Скопируйте его в файл debian/двоичныйпакет.symbols.

– Если это первый пакет, то используйте пустой файл.
3This path is compliant with the FHS. «Filesystem Hierarchy Standard: /usr/lib : Libraries for programming and packages»

states «Applications may use a single subdirectory under /usr/lib. If an application uses a subdirectory, all architecture-dependent
data exclusively used by the application must be placed within that subdirectory.»

67

https://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html#USRLIBLIBRARIESFORPROGRAMMINGANDPA

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.17. LIBRARY PACKAGE NAME

• Соберите двоичный пакет.

– If the dpkg-gensymbols command warns about some new symbols:
* Extract the updated DEBIAN/symbols file with the «dpkg-deb -e» command.
* Удалите номер редакции версии Debian, например, -1, из файла.
* Скопируйте его в файл debian/двоичныйпакет.symbols.
* Повторно соберите двоичный пакет.

– If the dpkg-gensymbols command does not warn about new symbols:
* Работа с библиотекой завершена.

Подробные сведения можно получить, обратившись к следующей справочной информации:

• «8.6.3 The symbols system» of the «Debian Policy Manual»

• «dh_makeshlibs(1) manapage»

• «dpkg-gensymbols(1) manapage»

• «dpkg-shlibdeps(1) manapage»

• «deb-symbols(5) manapage»

Также следует ознакомиться со следующей документацией:

• Debian wiki: «UsingSymbolsFiles»

• Debian wiki: «Projects/ImprovedDpkgShlibdeps»

• Debian kde team: «Working with symbols files»

• «Раздел 14.11»

• «Раздел 14.12»

Подсказка

For C++ libraries and other cases where the tracking of symbols is problematic,
follow «8.6.4 The shlibs system» of the «Debian Policy Manual», instead. Please
make sure to erase the empty debian/binarypackage.symbols file generated by
the debmake command. For this case, the DEBIAN/shlibs file is used.

10.17 Library package name
Let’s consider that the upstream source tarball of the libfoo library is updated from libfoo-7.0.tar.gz to
libfoo-8.0.tar.gz with a new SONAME major version which affects other packages.

Двоичный пакет библиотеки следует переименовать с libfoo7 в libfoo8, чтобы после загрузки
пакета, созданного из на осно, в unstable все зависимые пакеты остались в рабочем состоянии.

Внимание

If the binary library package isn’t renamed, many dependent packages in the
unstable suite become broken just after the library upload even if a binNMU
upload is requested. The binNMU may not happen immediately after the upload
due to several reasons.

Пакет -dev должен соответствовать следующим правилам именования:

68

https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-symbols-system
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.debian.org/Projects/ImprovedDpkgShlibdeps
https://qt-kde-team.pages.debian.net/symbolfiles.html
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-shlibs-system

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.18. СМЕНА БИБЛИОТЕК

• Используйте имя пакета -dev без номера версии: libfoo-dev

– This is the typical one for leaf library packages.
– В архиве может находится только одна версия пакета с исходным кодом библиотеки.

* The associated library package needs to be renamed from libfoo7 to libfoo8 to prevent
dependency breakage in the unstable suite during the library transition.

– This approach should be used if the simple binNMU resolves the library dependency quickly
for all affected packages. (ABI change by dropping the deprecated API while keeping the
active API unchanged.)

– This approach may still be a good idea if manual code updates, etc. can be coordinated and
manageable within limited packages. (API change)

• Используйте имена пакетов -dev с указанием версии: libfoo7-dev и libfoo8-dev

– This is typical for many major library packages.
– В архиве могут находится две версии пакетов с исходным кодом библиотеки.

* Все зависимые пакет должны зависить от libfoo-dev.
* Пусть и libfoo7-dev, и libfoo8-dev предоставляют libfoo-dev.
* Пакет с исходным кодом следует переименовать в libfoo7-7.0.tar.gz и libfoo8-8.0.tar.gz,

соответственно, из libfoo-?.0.tar.gz.
* В зависимости от пакета путь установки файлов, включающий libfoo7 и libfoo8, со-

ответственно, для заголовочных файлов и проч., следует выбирать так, чтобы их
можно было установить одновременно.

– По возможности не используйте слишком жёсткий подход.
– This approach should be used if the update of multiple dependent packages require manual

code updates, etc. (API change) Otherwise, the affected packages become RC buggy with
FTBFS (Fails To Build From Source).

Подсказка

If the data encoding scheme changes (e.g., latin1 to utf-8), the same care as the
API change needs to be taken.

См. «Раздел 10.9».

10.18 Смена библиотек
When you package a new library package version which affects other packages, you must file a transition
bug report against the release.debian.org pseudo package using the reportbug command with the ben
file and wait for the approval for its upload from the Release Team.

У команды подготовки выпуска имеется «система отслеживания переходов». См. «Transitions».

Предостережение

Please make sure to rename binary packages as in «Раздел 10.17».

69

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://ben.debian.net/#_query_language
https://ben.debian.net/#_query_language
https://wiki.debian.org/Teams/ReleaseTeam
https://release.debian.org/transitions/
https://wiki.debian.org/Teams/ReleaseTeam/Transitions

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.19. БЕЗОПАСНАЯ BINNMU-ЗАГРУЗКА

10.19 Безопасная binNMU-загрузка
A «binNMU» is a binary-only non-maintainer upload performed for library transitions etc. In a binNMU
upload, only the «Architecture: any» packages are rebuilt with a suffixed version number (e.g. version
2.3.4-3 will become 2.3.4-3+b1). The «Architecture: all» packages are not built.

The dependency defined in the debian/control file among binary packages from the same source
package should be safe for the binNMU. This needs attention if there are both «Architecture: any» and
«Architecture: all» packages involved in it.

• «Architecture: any» package: depends on «Architecture: any» foo package

– Depends: foo (= ${binary:Version})

• «Architecture: any» package: depends on «Architecture: all» bar package

– Depends: bar (= ${source:Version})

• «Architecture: all» package: depends on «Architecture: any» baz package

– Depends: baz (>= ${source:Version}), baz (<< ${source:Version}.0~)

10.20 Отладочная информация
The Debian package is built with the debugging information but packaged into the binary package after
stripping the debugging information as required by «Chapter 10 - Files» of the «Debian Policy Manual».

См.

• «6.7.9. Best practices for debug packages» of the «Debian Developer’s Reference».

• «18.2 Debugging Information in Separate Files» of the «Debugging with gdb»

• «dh_strip(1) manapage»

• «strip(1) manapage»

• «readelf(1) manapage»

• «objcopy(1) manapage»

• Debian wiki: «DebugPackage»

• Debian wiki: «AutomaticDebugPackages»

• Сообщение в списке рассылки debian-devel: «Информация о статусе автоматических отла-
дочных пакетов» (2015-08-15)

10.21 -dbgsym package
The debugging information is automatically packaged separately as the debug package using the dh_strip
command with its default behavior. The name of such a debug package normally has the -dbgsym suffix.

• The debian/rules file shouldn’t explicitly contain dh_strip.

• Set the Build-Depends to debhelper-compat (>=13) while removing Build-Depends to debhelper
in debian/control.

70

https://wiki.debian.org/binNMU
https://www.debian.org/doc/debian-policy/ch-files.html
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-dbg
https://sourceware.org/gdb/current/onlinedocs/gdb/Separate-Debug-Files.html#Separate-Debug-Files
https://wiki.debian.org/DebugPackage
https://wiki.debian.org/AutomaticDebugPackages
https://lists.debian.org/debian-devel/2015/08/msg00443.html
https://lists.debian.org/debian-devel/2015/08/msg00443.html

ГЛАВА 10. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 10.22. DEBCONF

10.22 debconf
Пакет debconf позволяет нам настраивать пакеты в ходе их установки двуями основными спосо-
бами:

• неинтерактивно из предпосевных настроек программы установки Debian.

• interactively from the menu interface (dialog, gnome, kde, …)

– установка пакета: вызывается командой dpkg
– установленный пакет: вызывается командой dpkg-reconfigure

Всё взаимодействие с пользователем в ходе установки пакета должны обрабатыватся систе-
мой debconf с помощью следующих файлов.

• debian/binarypackage.config

– Этот config-сценарий debconf используется для того, чтобы задавать любые вопросы,
необходимые для настройки пакета.

• debian/двоичныйпакет.template

– Этот templates-файл debconf используется для того, чтобы задавать любые вопросы,
наобходимые для настройки пакета.

These debconf files are called by package configuration scripts in the binary Debian package

• DEBIAN/binarypackage.preinst

• DEBIAN/binarypackage.prerm

• DEBIAN/binarypackage.postinst

• DEBIAN/binarypackage.postrm

See dh_installdebconf(1), debconf(7), debconf-devel(7) and «3.9.1 Prompting in maintainer scripts»
in the «Debian Policy Manual».

71

https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts

Глава 11

Packaging with git

Up to «Глава 10», we focused on packaging operations without using Git or any other VCS. These
traditional packaging operations were based on the tarball released by the upstream as mentioned in
«Раздел 10.1».

Currently, the git(1) command is the de-facto platform for the VCS tool and is the essential part of
both upstream development and Debian packaging activities. (See Debian wiki «Debian git packaging
maintainer branch formats and workflows» for existing VCS workflows.)

Замечание

Since the non-native Debian source package uses «diff -u» as its backend
technology for the maintainer modification, it can’t represent modification
involving symlink, file permissions, nor binary data (March 2022 discussion on
debian-devel@l.d.o). Please avoid making such maintainer modifications even
though these can be recorded in the Git repository.

Since VCS workflows are complicated topic and there are many practice styles, I only touch on some
key points with minimal information, here.

Salsa is the remote Git repository service with associated tools. It offers the collaboration platform for
Debian packaging activities using a custom GitLab application instance. See:

• «Раздел 11.1»

• «Раздел 11.2»

• «Раздел 11.3»

There are 2 styles of branch names for the Git repository used for the packaging. See «Раздел 11.4».
There are 2 main usage styles for the Git repository for the packaging. See:

• «Раздел 11.5»

• «Раздел 11.6»

There are 2 notable Debian packaging tools for the Git repository for the packaging.

• gbp(1) and its subcommands:

– This is a tool designed to work with «Раздел 11.5».
– See «Раздел 11.7».

• dgit(1) and its subcommands:

– This is a tool designed to work with both «Раздел 11.6» and «Раздел 11.5».
– This contains a tool to upload Debian packages using the dgit server.
– See «Раздел 11.8».

72

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Version_control
https://wiki.debian.org/GitPackagingSurvey
https://wiki.debian.org/GitPackagingSurvey
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://salsa.debian.org
https://en.wikipedia.org/wiki/GitLab

ГЛАВА 11. PACKAGING WITH GIT 11.1. SALSA REPOSITORY

11.1 Salsa repository
It is highly desirable to host Debian source code package on Salsa. Over 90% of all Debian source code
packages are hosted on Salsa. 1

The exact VCS repository hosting an existing Debian source code package can be identified by a
metadata field Vcs-*which can be viewed with the apt-cache showsrc <package-name> command.

11.2 Salsa account setup
After signing up for an account on Salsa, make sure that the following pages have the same e-mail
address and GPG keys you have configured to be used with Debian, as well as your SSH key:

• https://salsa.debian.org/-/profile/emails

• https://salsa.debian.org/-/user_settings/gpg_keys

• https://salsa.debian.org/-/user_settings/ssh_keys

11.3 Salsa CI service
Salsa runs Salsa CI service as an instance of GitLab CI for «Раздел 10.4».

For every «git push» instances, tests which mimic tests run on the official Debian package service
can be run by setting Salsa CI configuration file «Раздел 6.13» as:

include:
- https://salsa.debian.org/salsa-ci-team/pipeline/raw/master/recipes/debian.yml

Customizations here

11.4 Branch names
The Git repository for the Debian packaging should have at least 2 branches:

• debian-branch to hold the current Debian packaging head.

– old style: master (or debian, main, …)
– DEP-14 style: debian/latest

• upstream-branch to hold the upstream releases in the imported form.

– old style: upstream
– DEP-14 style: upstream/latest

In this tutorial, old style branch names are used in examples for simplicity.

Замечание

This upstream-branch may need to be created using the tarball released by the
upstream independent of the upstream Git repository since it tends to contain
automatically generated files.

The upstream Git repository content can co-exit in the local Git repository used for the Debian packaging
by adding its copy. E.g.:
$ git remote add upstreamvcs <url-upstream-git-repo>
$ git fetch upstreamvcs master:upstream-master

This allows easy cherry-picking from the upstream Git repository for bug fixes.
1Use of git.debian.org or alioth.debian.org are deprecated now.

73

https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org/-/profile/emails
https://salsa.debian.org/-/user_settings/gpg_keys
https://salsa.debian.org/-/user_settings/ssh_keys
https://salsa.debian.org
https://salsa.debian.org/salsa-ci-team/pipeline
https://docs.gitlab.com/ee/ci/
https://salsa.debian.org/salsa-ci-team/pipeline
https://dep-team.pages.debian.net/deps/dep14/
https://dep-team.pages.debian.net/deps/dep14/

ГЛАВА 11. PACKAGING WITH GIT 11.5. PATCH UNAPPLIED GIT REPOSITORY

11.5 Patch unapplied Git repository
The patch unapplied Git repository can be summarized as:

• This seems to be the traditional practice as of 2024.

• The source tree matches extracted contents by «dpkg-source -x --skip-patches» of the Debian
source package.

– The upstream source is recorded in the Git repository without changes.
– The maintainer modified contents are confined within the debian/* directory.
– Maintainer changes to the upstream source are recorded in debian/patches/* files for the

Debian source format «3.0 (quilt)».

• This repository style is useful for all variants of traditional workflows and gbp based workflow:

– «Раздел 5.7» (no patch)
– «Раздел 5.10»

* debian/patches/* files can also be generated using «git format-patch», «git diff», or
«gitk» from git commits in the through-away maintainer modification branch or from the
upstream unreleased commits.

– «Раздел 5.11» including the last «dquilt pop -a» step
– «Раздел 11.9»

• Use helper scripts such as dquilt(1) and gbp-pq(1) to manage data in debian/patches/* files.

– Add .pc line to the ~/.gitignore file if dquilt is used.
– Add unapply-patches and abort-on-upstream-changes lines in the debian/source/local-

options file.

• Use «dpkg-source -b» to build the Debian source package.

• Use dput(1) to upload the Debian source package.

– Use «dgit --gbp push-source» or «dgit --gbp push» instead to upload the Debian package
via the dgit server (see «dgit-maint-gbp(7)»).

Замечание

The debian/source/local-options and debian/source/local-patch-header files
are meant to be recorded by the git command. These aren’t included in the
Debian source package.

11.6 Patch applied Git repository
The patch applied Git repository can be summarized as:

• The source tree matches extracted contents by «dpkg-source -x» of the Debian source package.

– The source tree is buildable and the same as what NMU maintainers see.
– The source is recorded in the Git repository with maintainer changes including the debian/

directory.
– Maintainer changes to the upstream source are also recorded in debian/patches/* files for

the Debian source format «3.0 (quilt)».

Use one of workflow styles:

74

ГЛАВА 11. PACKAGING WITH GIT 11.7. NOTE ON GBP

• dgit-maint-merge(7) workflow.

– Use this if you don’t intend to record topic patches in the Debian source package.
– Good enough for packages only with trivial modifications to the upstream.
– Only choice for packages with intertwined modification histories to the upstream
– Add auto-commit and single-debian-patch lines in the debian/source/local-options file
– Use «git checkout upstream; git pull» to pull the new upstream commit and use «git checkout

master ; git merge <new-version-tag>» to merge it to the master branch.
– Use «dpkg-source -b» to build the Debian source package.
– Use «dgit push-source» or «dgit push» for uploading the Debian package via the dgit

server.
– See «Раздел 5.12» for example.

• dgit-maint-debrebase(7) workflow.

– Use this if you wish to commit maintainer changes to the patch applied Git repository with the
same granularity as patches of «Раздел 11.9».

– Good for packages with multiple sequenced modifications to the upstream.
– Use «dgit build-source» to build the Debian source package.
– Use «dgit push-source» or «dgit push» for uploading the Debian package via the dgit

server.
– Details of this workflow are beyond the scope of this tutorial document. See «Раздел 11.12»

for more.

11.7 Note on gbp
The gbp command is provided by the git-buildpackage package.

• This command is designed to manage contents of «Раздел 11.5» efficiently.

• Use «gbp import-orig» to import the new upstream tar to the git repository.

– The «--pristine-tar» option for the «git import-orig» command enables storing the upstream
tarball in the same git repository.

– The «--uscan» option as the last argument of the «gbp import-orig» command enables
downloading and committing the new upstream tarball into the git repository.

• Use «gbp import-dsc» to import the previous Debian source package to the git repository.

• Use «gbp dch» to generate the Debian changelog from the git commit messages.

• Use «gbp buildpackage» to build the Debian binary package from the git repository.

– The sbuild package can be used as its clean chroot build backend either by configuration or
adding «--git-builder=’sbuild -A -s --source-only-changes -v -d unstable’»

• Use «gbp pull» to update the debian, upstream and pristine-tar branches safely from the remote
repository.

• Use «gbp pq» to manage quilt patches without using dquilt command.

• Use «gbp clone REPOSITORY_URL» to clone and set up tracking branches for debian, upstream
and pristine-tar.

Package history management with the git-buildpackage package is becoming the standard practice
for many Debian maintainers. See more at:

• «Сборка пакетов Debian с помощью git-buildpackage»

• «4 tips to maintain a “3.0 (quilt)” Debian source package in a VCS»

• The systemd packaging practice documentation on «Building from source»

• The workflow mentioned in dgit-maint-gbp(7) which enables to use this gbp with dgit

75

https://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.html
https://raphaelhertzog.com/2010/11/18/4-tips-to-maintain-a-3-0-quilt-debian-source-package-in-a-vcs/
https://salsa.debian.org/systemd-team/systemd/-/blob/debian/master/debian/README.source

ГЛАВА 11. PACKAGING WITH GIT 11.8. NOTE ON DGIT

11.8 Note on dgit
The dgit command is provided by the dgit package.

• This command is designed to manage contents of «Раздел 11.6» efficiently.

– This enables to access the Debian package repository as if it is a git remote repository.

• This command supports uploading Debian packages using the dgit server from both «Раздел 11.5»
and «Раздел 11.6».

The new dgit package offers commands interact with the Debian repository as if it was a git repository.
It does not replace gbp-buildpackage and both can be used at the same time. Using plain gbp-buildpackage
is recommended for developers who want to run git push/pull on Salsa and use things such as Salsa CI
or Merge Requests on Salsa.

For more details see the extensive guides:

• dgit-maint-gbp(7) — for the Debian source format «3.0 (quilt)» package with its Debian Git repository
which is kept usable also for people using gbp-buildpackage(1) using «Раздел 11.5».

• dgit-maint-merge(7) — for the Debian source format «3.0 (quilt)» package with its changes flowing
both ways between the upstream Git repository and the Debian Git repository which are tightly
coupled using «Раздел 11.6».

• dgit-maint-debrebase(7) — for the Debian source format «3.0 (quilt)» package with its changes
flowing mostly one way from the upstream Git repository to the Debian Git repository using «Раз-
дел 11.6».

• dgit-maint-native(7) — for the Debian source format «3.0 (native)» package in the Debian Git
repository. (No maintainer changes)

The dgit(1) command can push the easy-to-trace change history to the https://browse.dgit.debian.org/-
site and can upload Debian package to the Debian repository properly without using dput(1).

The concept around dgit is beyond this tutorial document. Please start reading relevant information:

• «dgit: use the Debian archive as a git remote (2015)»

• «tag2upload (2023)»

11.9 Patch by «gbp-pq» approach
For «Раздел 11.5», you can generate debian/patches/* files using the gbp-pq(1) command from git
commits in the through-away patch-queue branch.

Unlike dquilt which offers similar functionality as seen «Раздел 5.11» and «Раздел 9.5», gbp-pq
doesn’t use .pc/* files to track patch state, but instead gbp-pq utilizes temporary branches in git.

11.10 Manage patch queue with gbp-pq
You can add, drop, and refresh debian/patches/* files with gbp-pq to manage patch queue.

If the package is managed in «Раздел 11.5» using the git-buildpackage package, you can revise
the upstream source to fix bug as the maintainer and release a new Debian revision using gbp pq.

• Add a new patch recording the upstream source modification on the file buggy_file as:

$ git checkout master
$ gbp pq import
gbp:info: ... imported on 'patch-queue/master
$ vim buggy_file
...
$ git add buggy_file
$ git commit
$ gbp pq export

76

https://browse.dgit.debian.org/
https://www.chiark.greenend.org.uk/~ijackson/2015/debconf-dgit-talk/slides.pdf
https://wiki.debian.org/DebianEvents/gb/2023/MiniDebConfCambridge/Jackson?action=AttachFile&do=get&target=slides.pdf

ГЛАВА 11. PACKAGING WITH GIT 11.11. GBP IMPORT-DSCS --DEBSNAP

gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
$ git add debian/patches/*
$ dch -i
$ git commit -a -m "Closes: #<bug_number>"
$ git tag debian/<version>-<rev>

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make «dpkg-source -b» work as expected after updating a
Debian package to the new upstream release.

$ git checkout master
$ gbp pq --force import # ensure patch-queue/master branch
gbp:info: ... imported on 'patch-queue/master
$ git checkout master
$ gbp import-orig --pristine-tar --uscan
...

gbp:info: Successfully imported version ?.?.? of ../packagename_?.?.?.orig. ←↩
tar.gz

$ gbp pq rebase
... resolve conflicts and commit to patch-queue/master branch
$ gbp pq export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
$ git add debian/patches
$ git commit -m "Update patches"
$ dch -v <newversion>-1
$ git commit -a -m "release <newversion>-1"
$ git tag debian/<newversion>-1

11.11 gbp import-dscs --debsnap
For Debian source packages named «<source-package>» recorded in the snapshot.debian.org archive,
an initial git repository managed in «Раздел 11.5» with all of the Debian version history can be generated
as follows.

$ gbp import-dscs --debsnap --pristine-tar <source-package>

11.12 Note on dgit-maint-debrebase workflow
Here are some hints around dgit-maint-debrebase(7). 2

• Use «dgit setup-new-tree» to prepare the local git working repository.

• The first maintainer modification commit should contain files only in the debian/ directory excluding
files in the debian/patches directory.

• debian/patches/* files are generated from the maintainer modification commit history using the
«dgit quilt-fixup» command automatically invoked from «dgit build» and «dgit push».

• Use «git-debrebase new-version <new-version-tag>» to rebase the maintainer modification
commit history with automatically updated debian/changelog.

• Use «git-debrebase conclude» to make a new pseudomerge (== «git merge -s ours») to record
Debian package with clean ff-history.

See dgit-maint-debrebase(7), dgit(1) and git-debrebase(1) for more.

2I may be incorrect, here.

77

http://snapshot.debian.org/

ГЛАВА 11. PACKAGING WITH GIT 11.13. QUASI-NATIVE DEBIAN PACKAGING

11.13 Quasi-native Debian packaging
The quasi-native packaging scheme packages a source without the real upstream tarball using the non-
native package format.

Подсказка

Some people promote this quasi-native packaging scheme even for programs
written only for Debian since it helps to ease communication with the downstream
distros such as Ubuntu for bug fixes etc.

This quasi-native packaging scheme involves 2 preparation steps:

• Organize its source tree almost like native Debian package (see «Раздел 6.4») with debian/* files
with a few exceptions:

– Make debian/source/format to contain «3.0 (quilt)» instead of «3.0 (native)» .
– Make debian/changelog to contain version-revision instead of version .

• Generate missing upstream tarball preferably without debian/* files.

– For Debian source format «3.0 (quilt)», removal of files under debian/ directory is an optional
action.

The rest is the same as the non-native packaging workflow as written in «Раздел 6.1».
Although this can be done in many ways («Раздел 16.4»), you can use the Git repository and «git

deborig» as:

$ cd /path/to/<dirname>
$ dch -r
... set its <version>-<revision>, e.g., 1.0-1
$ git tag -s debian/1.0-1
$ git rm -rf debian
$ git tag -s upstream/1.0
$ git commit -m upstream/1.0
$ git reset --hard HEAD^
$ git deborig
$ sbuild

78

Глава 12

Полезные советы

Please also read insightful pages linked from «Notes on Debian» by Russ Allbery (long time Debian
developer) which have best practices for advanced packaging topics.

12.1 Сборка с использованием кодировки UTF-8
Локалью по умолчанию в сборочном окружении является C.

Некоторые программы, такие как функци read из Python3, изменяют своё поведение в зависи-
мости от текущей локали.

Adding the following code to the debian/rules file ensures building the program under the C.UTF-8
locale.

LC_ALL := C.UTF-8
export LC_ALL

12.2 Преобразование в кодировку UTF-8
If upstream documents are encoded in old encoding schemes, converting them to UTF-8 is a good idea.

Use the iconv command in the libc-bin package to convert the encoding of plain text files.

$ iconv -f latin1 -t utf8 foo_in.txt > foo_out.txt

Используйте w3m(1) для преобразования HTML-файлов в обычные текстовые файлы в коди-
ровке UTF-8. При выполнении преобразования убедитесь, что у вас используется локаль UTF-8.

$ LC_ALL=C.UTF-8 w3m -o display_charset=UTF-8 \
-cols 70 -dump -no-graph -T text/html \
< foo_in.html > foo_out.txt

Запустите эти сценарии в цели override_dh_* файла debian/rules.

12.3 Hints for Debugging
Когда вы сталкиваетесь с проблемами сборки или дампом памяти созданных двоичных программ,
вам необходимо разрешить их самостоятельно. Это называется отладкой.

Это слишком обширная тема, чтобы обсуждать её в настоящем руководстве. Поэтому позволь-
те просто привести несколько ссылок и полезных советов по использованию типичных инструмен-
тов отладки.

• Wikipedia: «core dump»

– «man core»
– Update the «/etc/security/limits.conf» file to include the following:

79

https://www.eyrie.org/~eagle/notes/debian/
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Core_dump

ГЛАВА 12. ПОЛЕЗНЫЕ СОВЕТЫ 12.3. HINTS FOR DEBUGGING

* soft core unlimited

– «ulimit -c unlimited» in ~/.bashrc
– «ulimit -a» to check
– Press Ctrl-\ or «kill -ABRT ’PID’» to make a core dump file

• gdb — отладчик GNU

– «info gdb»
– «Debugging with GDB» in /usr/share/doc/gdb-doc/html/gdb/index.html

• strace — трассировка системных вызовов и сигналов

– Используйте сценарий strace-graph из каталога /usr/share/doc/strace/examples/, чтобы
иметь удобную визуализацию в виде дерева

– «man strace»

• ltrace - трассировка библиотечных вызовов

– «man ltrace»

• «sh -n script.sh» - Syntax check of a Shell script

• «sh -x script.sh» - Trace a Shell script

• «python3 -m py_compile script.py» - Syntax check of a Python script

• «python3 -mtrace --trace script.py» - Trace a Python script

• «perl -I ../libpath -c script.pl» - Syntax check of a Perl script

• «perl -d:Trace script.pl» - Trace a Perl script

– Install the libterm-readline-gnu-perl package or its equivalent to add input line editing capability
with history support.

• lsof — вывод списка файлов, открытых процессами

– «man lsof»

Подсказка

The script command records console outputs.

Подсказка

The screen and tmux commands used with the ssh command offer secure and
robust remote connection terminals.

Подсказка

A Python- and Shell-like REPL (=READ + EVAL + PRINT + LOOP) environment
for Perl is offered by the reply command from the libreply-perl (new) package
and the re.pl command from the libdevel-repl-perl (old) package.

80

ГЛАВА 12. ПОЛЕЗНЫЕ СОВЕТЫ 12.3. HINTS FOR DEBUGGING

Подсказка

The rlwrap and rlfe commands add input line editing capability with history
support to any interactive commands. E.g. «rlwrap dash -i’» .

81

Глава 13

Tool usages

Here are some notable tools around Debian packaging.

Замечание

The descriptions in this section are intentionally brief. Prospective maintainers are
strongly encouraged to search for and read all relevant documentation associated
with these commands.

Замечание

Examples here use the gz-compression. The xz-compression may be used
instead.

13.1 debdiff
Можно сравнивать содержимое файлов в двух пакетах Debian с исходным кодом с помощью ко-
манды debdiff.
$ debdiff old-package.dsc new-package.dsc

Также можно сравнивать списки файлов в двух наборах двоичных пакетов Debian с помощью
команды debdiff.
$ debdiff old-package.changes new-package.changes

Это полезно для определения изменений в пакетах с исходным кодом и для проверки на пред-
мет нечаянных изменений, привнесённых при обновлении двоичных пакетов, таких как непредна-
меренное ошибочное размещение или удаление файлов.

Debian now enforces the source-only upload when developing packages. So there may be 2 different
*.changes files:

• package_version-revision_source.changes for the normal source-only upload

• package_version-revision_arch.changes for the binary upload

13.2 dget
Можно скачать набор файлв для пакета Debian с исходным кодом с помощью команды dget.
$ dget https://www.example.org/path/to/package_version-rev.dsc

82

ГЛАВА 13. TOOL USAGES 13.3. MK-ORIGTARGZ

13.3 mk-origtargz
You can make the upstream tarball ../foo-newversion.tar.[xg]z accessible from the Debian source tree
as ../foo_newversion.orig.tar.[xg]z. This command is useful for renaming and symlinking the upstream
tarball to the expected Debian naming convention.

13.4 origtargz
You can fetch the pre-existing orig tarball of a Debian package from various sources, and unpack it with
origtargz command.

This is basically for -2, -3, … revisions.

13.5 git deborig
If the upstream project is hosted in a Git repository without an official tarball release, you can generate
its orig tarball from the git repository for use by the Debian source package. Execute «git deborig» from
the root of the checked-out source tree.

This is basically for -1 revisions.

13.6 dpkg-source -b
The «dpkg-source -b» command packs the upstream source tree into the Debian source package.

It expects a series of patches in the debian/patches/ directory and their application sequence in
debian/patches/series.

It is compatible with dquilt (see «Раздел 4.4») operations and understands the patch application
status from the existence of .pc/applied-patches.

The dpkg-buildpackage command invokes «dpkg-source -b».

13.7 dpkg-source -x
The «dpkg-source -x» command extracts the source tree and applies the patches in the debian/patches/
directory using the sequence specified in debian/patches/series to the upstream source tree. It also
adds .pc/applied-patches. (See «Раздел 11.6».)

The «dpkg-source -x --skip-patches» command extracts source tree only. It doesn’t add .pc/applied-
patches. (See «Раздел 11.5».)

Both extracted source trees are ready for building Debian binary packages with dpkg-buildpackage,
dbuild, sbuild, etc..

13.8 debc
Созданные пакеты следуется установить с помощью команды debc для их локальной проверки.

$ debc package_version-rev_arch.changes

13.9 piuparts
Созданные пакеты следует установить с помощью команды piuparts для их автоматической про-
верки.

$ sudo piuparts package_version-rev_arch.changes

83

ГЛАВА 13. TOOL USAGES 13.10. BTS

Замечание

This is a very slow process with remote APT package repository access.

13.10 bts
After uploading the package, you will receive bug reports. It is an important duty of a package maintainer
to manage these bugs properly, as described in «5.8. Handling bugs» of the «Debian Developer’s
Reference».

The bts command is a handy tool to manage bugs on the «Debian Bug Tracking System».

$ bts severity 123123 wishlist , tags -1 pending

84

https://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling
https://www.debian.org/Bugs/

Глава 14

Дополнительные примеры

There is an old Latin saying: «fabricando fit faber» («practice makes perfect»).
It is highly recommended to practice and experiment with all the steps of Debian packaging with

simple packages. This chapter provides you with many upstream cases for your practice.
This should also serve as introductory examples for many programming topics.

• Programming in the POSIX shell, Python3, and C.

• Method to create a desktop GUI program launcher with icon graphics.

• Conversion of a command from CLI to GUI.

• Conversion of a program to use gettext for internationalization and localization: POSIX shell and
C sources.

• Overview of many build systems: Makefile, Python, Autotools, and CMake.

Please note that Debian takes a few things seriously:

• Свободное ПО

• Stability and security of OS

• Универсальная операционная система реализуется через

– свободный выбор источников и исходных кодов основной ветки разработки,
– свободный выбор архитектур ЦП, а также
– свободный выбор языка пользовательского интерфейса.

Знакомство с типичным примером работы над пакетом, представленным в «Глава 5», является
предварительным условием для чтения данной главы.

Some details are intentionally left vague in the following sections. Please try to read the pertinent
documentation and practice yourself to find them out.

Подсказка

The best source of a packaging example is the current Debian archive itself.
Please use the «Debian Code Search» service to find pertinent examples.

14.1 Выборочное применение шаблонов
Here is an example of creating a simple Debian package from a zero-content source in an empty directory.

This is a good way to obtain all the template files without cluttering the upstream source tree you are
working on.

Допустим, пустым каталогом будет debhello-0.1.

85

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Internationalization_and_localization
https://codesearch.debian.net/

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.1. ВЫБОРОЧНОЕ ПРИМЕНЕНИЕ …

$ mkdir debhello-0.1
$ tree
.
+-- debhello-0.1

2 directories, 0 files

Let’s generate the maximum amount of template files.
Let’s also use the «-p debhello -t -u 0.1 -r 1» options to create the missing upstream tarball with

default -x3 and T options.

$ cd /path/to/debhello-0.1
$ debmake -p debhello -t -u 0.1 -r 1
I: set parameters
...

Проверим созданные шаблонные файлы.

$ cd /path/to
$ tree
.
+-- debhello-0.1
| +-- debian
| +-- README.Debian
| +-- README.source
| +-- changelog
| +-- clean
| +-- control
| +-- copyright
| +-- debhello.bug-control.ex
| +-- debhello.bug-presubj.ex
| +-- debhello.bug-script.ex
| +-- debhello.conffiles.ex
| +-- debhello.cron.d.ex
| +-- debhello.cron.daily.ex
| +-- debhello.cron.hourly.ex
| +-- debhello.cron.monthly.ex
| +-- debhello.cron.weekly.ex
| +-- debhello.default.ex
| +-- debhello.emacsen-install.ex
| +-- debhello.emacsen-remove.ex
| +-- debhello.emacsen-startup.ex
| +-- debhello.lintian-overrides.ex
| +-- debhello.service.ex
| +-- debhello.tmpfile.ex
| +-- dirs
| +-- gbp.conf
| +-- install
| +-- links
| +-- maintscript.ex
| +-- manpage.1.ex
| +-- manpage.asciidoc.ex
| +-- manpage.md.ex
| +-- manpage.sgml.ex
| +-- manpage.xml.ex
| +-- patches
| | +-- series
| +-- postinst.ex
| +-- postrm.ex
| +-- preinst.ex
| +-- prerm.ex
| +-- rules
| +-- salsa-ci.yml
| +-- source

86

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

| | +-- format
| | +-- lintian-overrides.ex
| | +-- local-options.ex
| | +-- local-patch-header.ex
| | +-- options.ex
| | +-- patch-header.ex
| +-- tests
| | +-- control
| +-- upstream
| | +-- metadata
| +-- watch
+-- debhello-0.1.tar.xz
+-- debhello_0.1.orig.tar.xz -> debhello-0.1.tar.xz

7 directories, 50 files

Теперь вы можете скопировать любой из созданных в каталоге debhello-0.1/debian/ шаблонных
файлов в ваш пакет, при необходимости их переименовав.

14.2 Без Makefile (командная оболочка, интерфейс командной
оболочки)

Ниже приводится пример создания простого пакета Debian из программы с интерфесом командной
оболочки, написанной для командной оболочки POSIX и не имеющей системы сборки.

Допустим tar-архив основной ветки имеет имя debhello-0.2.tar.gz.
Этот тип исходного кода не имеет средств автоматизации, и файлы должны быть установлены

вручную.
For example:

$ tar -xzmf debhello-0.2.tar.gz
$ cd debhello-0.2
$ sudo cp scripts/hello /bin/hello
...

Let’s get this source as tar file from a remote site and make it the Debian package.
Загрузим debhello-0.2.tar.gz

$ wget http://www.example.org/download/debhello-0.2.tar.gz
...
$ tar -xzmf debhello-0.2.tar.gz
$ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.gz

5 directories, 6 files

Итак, сценарий командной оболочки POSIX hello является очень простым.
hello (v=0.2)

$ cat debhello-0.2/scripts/hello
#!/bin/sh -e
echo "Hello from the shell!"
echo ""
echo -n "Type Enter to exit this program: "

87

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

read X

Here, hello.desktop supports the «Desktop Entry Specification».
hello.desktop (v=0.2)

$ cat debhello-0.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Here, hello.png is the icon graphics file.
Let’s package this with the debmake command. Here, the -b’:sh’ option is used to specify that the

generated binary package is a shell script.

$ cd /path/to/debhello-0.2
$ debmake -b':sh' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="0.2", rev="1"
I: *** start packaging in "debhello-0.2". ***
I: provide debhello_0.2.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-0.2.tar.gz debhello_0.2.orig.tar.gz
I: pwd = "/path/to/debhello-0.2"
I: parse binary package settings: :sh
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: analyze the source tree
I: build_type = Unknown
I: scan source for copyright+license text and file extensions
I: 25 %, ext = md
...

Проверим созданные шаблонные файлы.
Дерево исходного кода после простого выполнения debmake. (v=0.2)

$ cd /path/to
$ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog
| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- gbp.conf
| | +-- install
| | +-- links
| | +-- patches
| | | +-- series

88

https://www.freedesktop.org/wiki/Specifications/desktop-entry-spec/

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format
| | | +-- local-options.ex
| | | +-- local-patch-header.ex
| | +-- tests
| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.gz
+-- debhello_0.2.orig.tar.gz -> debhello-0.2.tar.gz

10 directories, 26 files

debian/rules (шаблонный файл, v=0.2):

$ cd /path/to/debhello-0.2
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%:
dh $@

По сути, это стандартный файл debian/rules, использующий команду dh. Поскольку это пакет
со сценарием, этот шаблонный файл debian/rules не имеет содержимого, связанного с флагом
сборки.

debian/control (шаблонный файл, v=0.2):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Since this is the shell script package, the debmake command sets «Architecture: all» and «Multi-
Arch: foreign». Also, it sets required substvar parameters as «Depends: ${misc:Depends}». These
are explained in «Глава 6».

Since this upstream source lacks the upstream Makefile, that functionality needs to be provided by
the maintainer. This upstream source contains only a script file and data files and no C source files;
the build process can be skipped but the install process needs to be implemented. For this case, this

89

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

is achieved cleanly by adding the debian/install and debian/manpages files without complicating the
debian/rules file.

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=0.2):

$ cd /path/to/debhello-0.2
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

debian/control (версия сопровождающего, v=0.2):
$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Внимание

If you leave «Section: unknown» in the template debian/control file unchanged,
the lintian error may cause a build failure.

debian/install (версия сопровождающего, v=0.2):
$ vim debian/install
... hack, hack, hack, ...
$ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps
scripts/hello usr/bin

debian/manpages (версия сопровождающего, v=0.2):
$ vim debian/manpages
... hack, hack, hack, ...
$ cat debian/manpages
man/hello.1

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шаблонные файлы в каталоге debian/. (v=0.2):

90

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 13 files

В данном дереве исходного кода вы можете создать неродной пакет Debian с помощью ко-
манды debuild (или её эквивалента). Вывод это команды очень подробен, в нём объясняется, что
происходит, и выглядит это следующим образом.

$ cd /path/to/debhello-0.2
$ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.2-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_clean
rm -f debian/debhelper-build-stamp

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
create-stamp debian/debhelper-build-stamp
dh_prep

rm -f -- debian/debhello.substvars
rm -fr -- debian/.debhelper/generated/debhello/ debian/debhello/ debi...

dh_auto_install --destdir=debian/debhello/
...
Finished running lintian.

Проверим результат сборки.
Командой debuild были созданы следующие файлы debhello версии 0.2:

$ cd /path/to
$ tree -FL 1
./
+-- debhello-0.2/
+-- debhello-0.2.tar.gz
+-- debhello_0.2-1.debian.tar.xz
+-- debhello_0.2-1.dsc

91

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

+-- debhello_0.2-1_all.deb
+-- debhello_0.2-1_amd64.build
+-- debhello_0.2-1_amd64.buildinfo
+-- debhello_0.2-1_amd64.changes
+-- debhello_0.2.orig.tar.gz -> debhello-0.2.tar.gz

2 directories, 8 files

Вы видите все созданные файлы.

• The debhello_0.2.orig.tar.gz file is a symlink to the upstream tarball.

• The debhello_0.2-1.debian.tar.xz file contains the maintainer generated contents.

• The debhello_0.2-1.dsc file is the meta data file for the Debian source package.

• The debhello_0.2-1_all.deb file is the Debian binary package.

• The debhello_0.2-1_amd64.build file is the build log file.

• The debhello_0.2-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

• The debhello_0.2-1_amd64.changes file is the meta data file for the Debian binary package.

The debhello_0.2-1.debian.tar.xz file contains the Debian changes to the upstream source as follows.
Сжатое содержимое архива debhello_0.2-1.debian.tar.xz:

$ tar -tzf debhello-0.2.tar.gz
debhello-0.2/
debhello-0.2/data/
debhello-0.2/data/hello.desktop
debhello-0.2/data/hello.png
debhello-0.2/man/
debhello-0.2/man/hello.1
debhello-0.2/scripts/
debhello-0.2/scripts/hello
debhello-0.2/README.md
$ tar --xz -tf debhello_0.2-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/install
debian/manpages
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.2-1_amd64.deb file contains the files to be installed as follows.
The binary package contents of debhello_0.2-1_all.deb:

$ dpkg -c debhello_0.2-1_all.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/applications/

92

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.3. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

-rw-r--r-- root/root/usr/share/applications/hello.desktop
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright
drwxr-xr-x root/root/usr/share/man/
drwxr-xr-x root/root/usr/share/man/man1/
-rw-r--r-- root/root/usr/share/man/man1/hello.1.gz
drwxr-xr-x root/root/usr/share/pixmaps/
-rw-r--r-- root/root/usr/share/pixmaps/hello.png

Here is the generated dependency list of debhello_0.2-1_all.deb.
The generated dependency list of debhello_0.2-1_all.deb:

$ dpkg -f debhello_0.2-1_all.deb pre-depends \
depends recommends conflicts breaks

(No extra dependency packages required since this is a POSIX shell program.)

Замечание

If you wish to replace upstream provided PNG file data/hello.png with maintainer
provided one debian/hello.png, editing debian/install isn’t enough. When
you add debian/hello.png, you need to add a line «include-binaries» to
debian/source/options since PNG is a binary file. See dpkg-source(1).

14.3 Makefile (командная оболочка, интерфейс командной обо-
лочки)

Ниже приводится пример создания простого пакета Debian из программы с интерфесом командной
оболочки, написанной для командной оболочки POSIX и использующей в качестве системы сборки
Makefile.

Допустим tar-архив основной ветки имеет имя debhello-1.0.tar.gz.
Предполагается, что этот тип исходного кода будет установлен как несистемный файл:

$ tar -xzmf debhello-1.0.tar.gz
$ cd debhello-1.0
$ make install

Debian packaging requires changing this «make install» process to install files to the target system
image location instead of the normal location under /usr/local.

Получитм исходный код и создадим пакет Debian.
Загрузим debhello-1.0.tar.gz

$ wget http://www.example.org/download/debhello-1.0.tar.gz
...
$ tar -xzmf debhello-1.0.tar.gz
$ tree
.
+-- debhello-1.0
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello

93

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.3. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

+-- debhello-1.0.tar.gz

5 directories, 7 files

Here, the Makefile uses $(DESTDIR) and $(prefix) properly. All other files are the same as in «Раз-
дел 14.2» and most of the packaging activities are the same.

Makefile (v=1.0)

$ cat debhello-1.0/Makefile
prefix = /usr/local

all:
: # do nothing

install:
install -D scripts/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
: # do nothing

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

Let’s package this with the debmake command. Here, the -b’:sh’ option is used to specify that the
generated binary package is a shell script.

$ cd /path/to/debhello-1.0
$ debmake -b':sh' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.0", rev="1"
I: *** start packaging in "debhello-1.0". ***
I: provide debhello_1.0.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.0.tar.gz debhello_1.0.orig.tar.gz
I: pwd = "/path/to/debhello-1.0"
I: parse binary package settings: :sh
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 25 %, ext = md
...

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.0):

$ cd /path/to/debhello-1.0
$ cat debian/rules
#!/usr/bin/make -f

94

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.4. PYPROJECT.TOML (PYTHON3, CLI)

You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%:
dh $@

#override_dh_auto_install:
dh_auto_install -- prefix=/usr

#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.0):

$ cd /path/to/debhello-1.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Since this upstream source has the proper upstream Makefile, there is no need to create debian/install
and debian/manpages files.

Файл debian/control в точности совпадает с тем же файлом из случая «Раздел 14.2».
В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шаблонные файлы в каталоге debian/. (v=1.0):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 11 files

The rest of the packaging activities are practically the same as the ones in «Раздел 14.2».

14.4 pyproject.toml (Python3, CLI)
Here is an example of creating a simple Debian package from a Python3 CLI program using pyproject.toml.

Получитм исходный код и создадим пакет Debian.
Загрузим debhello-1.1.tar.gz

95

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.4. PYPROJECT.TOML (PYTHON3, CLI)

$ wget http://www.example.org/download/debhello-1.1.tar.gz
...
$ tar -xzmf debhello-1.1.tar.gz
$ tree
.
+-- debhello-1.1
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src
| +-- debhello
| +-- __init__.py
| +-- main.py
+-- debhello-1.1.tar.gz

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.1) — PEP 517 configuration

$ cat debhello-1.1/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.1.0"
description = "Hello Python (CLI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = {file = "LICENSE.txt"}
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]

96

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.4. PYPROJECT.TOML (PYTHON3, CLI)

package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.1) — for tar-ball.

$ cat debhello-1.1/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.1)

$ cat debhello-1.1/src/debhello/__init__.py
"""
debhello program (CLI)
"""

src/debhello/main.py (v=1.1) — command entry point

$ cat debhello-1.1/src/debhello/main.py
"""
debhello program
"""

import sys

__version__ = '1.1.0'

def main(): # needed for console script
print(' ========== Hello Python3 ==========')
print('argv = {}'.format(sys.argv))
print('version = {}'.format(debhello.__version__))
return

if __name__ == "__main__":
sys.exit(main())

Let’s package this with the debmake command. Here, the -b’:py3’ option is used to specify the
generated binary package containing Python3 script and module files.

$ cd /path/to/debhello-1.1
$ debmake -b':py3' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.1", rev="1"
I: *** start packaging in "debhello-1.1". ***
I: provide debhello_1.1.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.1.tar.gz debhello_1.1.orig.tar.gz
I: pwd = "/path/to/debhello-1.1"
I: parse binary package settings: :py3
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
I: analyze the source tree
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: scan source for copyright+license text and file extensions
...

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.1):

$ cd /path/to/debhello-1.1
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.

97

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.4. PYPROJECT.TOML (PYTHON3, CLI)

#export DH_VERBOSE = 1

%:
dh $@ --with python3 --buildsystem=pybuild

По сути, это стандартный файл debian/rules, использующий команду dh.
The use of the «--with python3» option invokes dh_python3 to calculate Python dependencies, add

maintainer scripts to byte compiled files, etc. See dh_python3(1).
The use of the «--buildsystem=pybuild» option invokes various build systems for requested Python

versions in order to build modules and extensions. See pybuild(1).
debian/control (шаблонный файл, v=1.1):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
dh-python,
pybuild-plugin-pyproject,
python3-all,
python3-setuptools,
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
${python3:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Since this is the Python3 package, the debmake command sets «Architecture: all» and «Multi-
Arch: foreign». Also, it sets required substvar parameters as «Depends: ${python3:Depends}, ${misc:Depends}».
These are explained in «Глава 6».

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.1):

$ cd /path/to/debhello-1.1
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (версия сопровождающего, v=1.1):
$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional

98

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.4. PYPROJECT.TOML (PYTHON3, CLI)

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,
Standards-Version: 4.6.2
Rules-Requires-Root: no
Vcs-Browser: https://salsa.debian.org/debian/debmake-doc
Vcs-Git: https://salsa.debian.org/debian/debmake-doc.git
Homepage: https://salsa.debian.org/debian/debmake-doc

Package: debhello
Architecture: all
Depends:
${misc:Depends},
${python3:Depends},
Description: Simple packaging example for debmake
This is an example package to demonstrate Debian packaging using
the debmake command.
.
The generated Debian package uses the dh command offered by the
debhelper package and the dpkg source format `3.0 (quilt)'.

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
This debhello command comes with the upstream-provided manpage and desktop file but the upstream

pyproject.toml doesn’t install them. So you need to update debian/install and debian/manpages as
follows:

debian/install (maintainer version, v=1.1):
$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2024 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

debian/manpages (maintainer version, v=1.1):
$ vim debian/install
... hack, hack, hack, ...
$ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps

99

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.5. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

The rest of the packaging activities are practically the same as the ones in «Раздел 14.3».
Шаблонные файл в каталоге debian/. (v=1.1):

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 13 files

Here is the generated dependency list of debhello_1.1-1_all.deb.
The generated dependency list of debhello_1.1-1_all.deb:

$ dpkg -f debhello_1.1-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: python3:any

14.5 Makefile (командная оболочка, графический интерфейс поль-
зователя)

Ниже приводится пример создания простого пакета Debian из программы с графическим интер-
фейсом пользователя, написанной для командной оболочки POSIX и использующей в качестве
системы сборки Makefile.

This upstream is based on «Раздел 14.3» with enhanced GUI support.
Допустим, tar-архив основной ветки имеет имя debhello-1.2.tar.gz.
Получитм исходный код и создадим пакет Debian.
Загрузим debhello-1.2.tar.gz

$ wget http://www.example.org/download/debhello-1.2.tar.gz
...
$ tar -xzmf debhello-1.2.tar.gz
$ tree
.
+-- debhello-1.2
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-1.2.tar.gz

100

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.5. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

5 directories, 7 files

Итак, сценарий hello был переписан таким образом, чтобы для создания графического интер-
фейса пользователя на основе GTK+ использовалась команда zenity.

hello (v=1.2)

$ cat debhello-1.2/scripts/hello
#!/bin/sh -e
zenity --info --title "hello" --text "Hello from the shell!"

Файл desktop должен быть обновлён и должен содержать строку Terminal=false, поскольку эта
программа имеет графический интерфейс.

hello.desktop (v=1.2)

$ cat debhello-1.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=false
Icon=hello.png
Categories=Utility;

All other files are the same as in «Раздел 14.3».
Let’s package this with the debmake command. Here, the «-b’:sh’» option is used to specify that the

generated binary package is a shell script.

$ cd /path/to/debhello-1.2
$ debmake -b':sh' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.2", rev="1"
I: *** start packaging in "debhello-1.2". ***
I: provide debhello_1.2.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.2.tar.gz debhello_1.2.orig.tar.gz
I: pwd = "/path/to/debhello-1.2"
I: parse binary package settings: :sh
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 25 %, ext = md
...

Let’s inspect the notable template files generated.
debian/control (шаблонный файл, v=1.2):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

101

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.5. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Сделаем этот пакет Debian лучше.
debian/control (версия сопровождающего, v=1.2):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
zenity,
${misc:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added zenity dependency.
Файл debian/rules полностью совпадает с тем же файлом из «Раздел 14.3».
В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шаблонные файлы в каталоге debian/. (v=1.2):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 11 files

The rest of the packaging activities are practically the same as in «Раздел 14.3».
Here is the generated dependency list of debhello_1.2-1_all.deb.

102

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.6. PYPROJECT.TOML (PYTHON3, GUI)

The generated dependency list of debhello_1.2-1_all.deb:
$ dpkg -f debhello_1.2-1_all.deb pre-depends \

depends recommends conflicts breaks
Depends: zenity

14.6 pyproject.toml (Python3, GUI)
Here is an example of creating a simple Debian package from a Python3 GUI program using pyproject.toml.

Допустим tar-архив основной ветки имеет имя debhello-1.3.tar.gz.
Получитм исходный код и создадим пакет Debian.
Загрузим debhello-1.3.tar.gz

$ wget http://www.example.org/download/debhello-1.3.tar.gz
...
$ tar -xzmf debhello-1.3.tar.gz
$ tree
.
+-- debhello-1.3
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src
| +-- debhello
| +-- __init__.py
| +-- main.py
+-- debhello-1.3.tar.gz

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.3) — PEP 517 configuration

$ cat debhello-1.3/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.3.0"
description = "Hello Python (GUI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = {file = "LICENSE.txt"}
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"License :: OSI Approved :: MIT License",

103

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.6. PYPROJECT.TOML (PYTHON3, GUI)

"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.3) — for tar-ball.
$ cat debhello-1.3/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.3)
$ cat debhello-1.3/src/debhello/__init__.py
"""
debhello program (GUI)
"""

src/debhello/main.py (v=1.3) — command entry point
$ cat debhello-1.3/src/debhello/main.py
#!/usr/bin/python3
from gi.repository import Gtk

__version__ = '1.3.0'

class TopWindow(Gtk.Window):

def __init__(self):
Gtk.Window.__init__(self)
self.title = "Hello World!"
self.counter = 0
self.border_width = 10
self.set_default_size(400, 100)
self.set_position(Gtk.WindowPosition.CENTER)
self.button = Gtk.Button(label="Click me!")
self.button.connect("clicked", self.on_button_clicked)
self.add(self.button)
self.connect("delete-event", self.on_window_destroy)

def on_window_destroy(self, *args):
Gtk.main_quit(*args)

def on_button_clicked(self, widget):
self.counter += 1
widget.set_label("Hello, World!\nClick count = %i" % self.counter)

def main():
window = TopWindow()
window.show_all()
Gtk.main()

if __name__ == '__main__':

104

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.6. PYPROJECT.TOML (PYTHON3, GUI)

main()

Let’s package this with the debmake command. Here, the -b’:py3’ option is used to specify that the
generated binary package contains Python3 script and module files.

$ cd /path/to/debhello-1.3
$ debmake -b':py3' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.3", rev="1"
I: *** start packaging in "debhello-1.3". ***
I: provide debhello_1.3.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.3.tar.gz debhello_1.3.orig.tar.gz
I: pwd = "/path/to/debhello-1.3"
I: parse binary package settings: :py3
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
I: analyze the source tree
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: scan source for copyright+license text and file extensions
...

The result is practically the same as in «Раздел 14.4».
Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.3):

$ cd /path/to/debhello-1.3
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (версия сопровождающего, v=1.3):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
gir1.2-gtk-3.0,
python3-gi,
${misc:Depends},
${python3:Depends},

105

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.7. MAKEFILE (SINGLE-BINARY PACKAGE)

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added python3-gi and gir1.2-gtk-3.0 dependencies.
The rest of the packaging activities are practically the same as in <pyproject>>.
Here is the generated dependency list of debhello_1.3-1_all.deb.
The generated dependency list of debhello_1.3-1_all.deb:

$ dpkg -f debhello_1.3-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: gir1.2-gtk-3.0, python3-gi, python3:any

14.7 Makefile (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using the
Makefile as its build system.

Это — пример улучшенного исходного кода основной ветки из «Глава 5». Он содержит страницу
руководства, файл desktop, а также иконку рабочего стола. Кроме того, чтобы этот пример имел
большую практическую ценность, исходный кодкомпануется с внешней библиотекой libm.

Допустим tar-архив основной ветки имеет имя debhello-1.4.tar.gz.
Предполагается, что этот тип исходного кода будет установлен как несистемный файл:

$ tar -xzmf debhello-1.4.tar.gz
$ cd debhello-1.4
$ make
$ make install

Debian packaging requires changing this «make install» process to install files into the target system
image location instead of the normal location under /usr/local.

Получитм исходный код и создадим пакет Debian.
Загрузим debhello-1.4.tar.gz

$ wget http://www.example.org/download/debhello-1.4.tar.gz
...
$ tar -xzmf debhello-1.4.tar.gz
$ tree
.
+-- debhello-1.4
| +-- LICENSE
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- config.h
| +-- hello.c
+-- debhello-1.4.tar.gz

5 directories, 9 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=1.4):

$ cat debhello-1.4/src/hello.c
#include "config.h"
#include <math.h>
#include <stdio.h>
int

106

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.7. MAKEFILE (SINGLE-BINARY PACKAGE)

main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
return 0;

}

src/config.h (v=1.4):

$ cat debhello-1.4/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ $^ -lm

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

Makefile (v=1.4):

$ cat debhello-1.4/src/config.h
#define PACKAGE_AUTHOR "Osamu Aoki"

Заметьте, что этот файл Makefile имеет соответствующую цель install для страницы руковод-
ства, файла desktop и иконки рабочего стола.

Создадим пакет из этого исходного кода с помощью команды debmake.

$ cd /path/to/debhello-1.4
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.4", rev="1"
I: *** start packaging in "debhello-1.4". ***
I: provide debhello_1.4.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.4.tar.gz debhello_1.4.orig.tar.gz
I: pwd = "/path/to/debhello-1.4"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions

107

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.8. MAKEFILE.IN + CONFIGURE …

I: 33 %, ext = c
...

The result is practically the same as in «Раздел 5.6».
Let’s make this Debian package, which is practically the same as in «Раздел 5.7», better as the

maintainer.
If the DEB_BUILD_MAINT_OPTIONS environment variable is not exported in debian/rules, lintian

warns «W: debhello: hardening-no-relro usr/bin/hello» for the linking of libm.
The debian/control file makes it exactly the same as the one in «Раздел 5.7», since the libm library

is always available as a part of libc6 (Priority: required).
В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шаблонные файлы в каталоге debian/. (v=1.4):

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- install
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 12 files

Остальные работы по подготовке пакета практически полностью совпадают с описанными в
«Раздел 5.8».

Here is the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=1.4):

$ dpkg -f debhello-dbgsym_1.4-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 1.4-1)
$ dpkg -f debhello_1.4-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

14.8 Makefile.in + configure (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using Makefile.in
and configure as its build system.

This is an enhanced upstream source example for «Раздел 14.7». This also links to an external
library, libm, and this source is configurable using arguments to the configure script, which generates
the Makefile and src/config.h files.

Допустим tar-архив основной ветки имеет имя debhello-1.5.tar.gz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

$ tar -xzmf debhello-1.5.tar.gz
$ cd debhello-1.5
$./configure --with-math
$ make

108

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.8. MAKEFILE.IN + CONFIGURE …

$ make install

Получитм исходный код и создадим пакет Debian.
Загрузим debhello-1.5.tar.gz

$ wget http://www.example.org/download/debhello-1.5.tar.gz
...
$ tar -xzmf debhello-1.5.tar.gz
$ tree
.
+-- debhello-1.5
| +-- LICENSE
| +-- Makefile.in
| +-- README.md
| +-- configure
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- hello.c
+-- debhello-1.5.tar.gz

5 directories, 9 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=1.5):

$ cat debhello-1.5/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.in (v=1.5):

$ cat debhello-1.5/Makefile.in
prefix = @prefix@

all: src/hello

src/hello: src/hello.c
$(CC) @VERBOSE@ \

$(CPPFLAGS) \
$(CFLAGS) \
$(LDFLAGS) \
-o $@ $^ \
@LINKLIB@

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello

109

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.8. MAKEFILE.IN + CONFIGURE …

install -m 644 -D data/hello.desktop \
$(DESTDIR)$(prefix)/share/applications/hello.desktop

install -m 644 -D data/hello.png \
$(DESTDIR)$(prefix)/share/pixmaps/hello.png

install -m 644 -D man/hello.1 \
$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

configure (v=1.5):
$ cat debhello-1.5/configure
#!/bin/sh -e
default values
PREFIX="/usr/local"
VERBOSE=""
WITH_MATH="0"
LINKLIB=""
PACKAGE_AUTHOR="John Doe"

parse arguments
while ["${1}" != ""]; do
VAR="${1%=*}" # Drop suffix =*
VAL="${1#*=}" # Drop prefix *=
case "${VAR}" in
--prefix)
PREFIX="${VAL}"
;;

--verbose|-v)
VERBOSE="-v"
;;

--with-math)
WITH_MATH="1"
LINKLIB="-lm"
;;

--author)
PACKAGE_AUTHOR="${VAL}"
;;

*)
echo "W: Unknown argument: ${1}"

esac
shift

done

setup configured Makefile and src/config.h
sed -e "s,@prefix@,${PREFIX}," \

-e "s,@VERBOSE@,${VERBOSE}," \
-e "s,@LINKLIB@,${LINKLIB}," \
<Makefile.in >Makefile

if ["${WITH_MATH}" = 1]; then
echo "#define WITH_MATH" >src/config.h
else
echo "/* not defined: WITH_MATH */" >src/config.h
fi

110

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.8. MAKEFILE.IN + CONFIGURE …

echo "#define PACKAGE_AUTHOR \"${PACKAGE_AUTHOR}\"" >>src/config.h

Please note that the configure command replaces strings with @… @ in Makefile.in to produce
Makefile and creates src/config.h.

Создадим пакет из этого исходного кода с помощью команды debmake.

$ cd /path/to/debhello-1.5
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.5", rev="1"
I: *** start packaging in "debhello-1.5". ***
I: provide debhello_1.5.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.5.tar.gz debhello_1.5.orig.tar.gz
I: pwd = "/path/to/debhello-1.5"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = configure
I: scan source for copyright+license text and file extensions
I: 17 %, ext = in
...

Полученный результат похож на то, что описано в «Раздел 5.6», но полностью они не совпа-
дают.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.5):

$ cd /path/to/debhello-1.5
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.5):

$ cd /path/to/debhello-1.5
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

--with-math \
--author="Osamu Aoki"

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Остальные работы по подготовке пакета практически полностью совпадают с описанными в

«Раздел 5.8».

111

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

14.9 Autotools (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using Autotools
= Autoconf and Automake (Makefile.am and configure.ac) as its build system.

This source usually comes with the upstream auto-generated Makefile.in and configure files, too.
This source can be packaged using these files as in «Раздел 14.8» with the help of the autotools-dev
package.

The better alternative is to regenerate these files using the latest Autoconf and Automake packages
if the upstream provided Makefile.am and configure.ac are compatible with the latest version. This is
advantageous for porting to new CPU architectures, etc. This can be automated by using the «--with
autoreconf» option for the dh command.

Допустим tar-архив основной ветки имеет имя debhello-1.6.tar.gz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

$ tar -xzmf debhello-1.6.tar.gz
$ cd debhello-1.6
$ autoreconf -ivf # optional
$./configure --with-math
$ make
$ make install

Получитм исходный код и создадим пакет Debian.
Загрузим debhello-1.6.tar.gz

$ wget http://www.example.org/download/debhello-1.6.tar.gz
...
$ tar -xzmf debhello-1.6.tar.gz
$ tree
.
+-- debhello-1.6
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-1.6.tar.gz

5 directories, 11 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=1.6):

$ cat debhello-1.6/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");

112

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

#endif
return 0;

}

Makefile.am (v=1.6):

$ cat debhello-1.6/Makefile.am
SUBDIRS = src man
$ cat debhello-1.6/man/Makefile.am
dist_man_MANS = hello.1
$ cat debhello-1.6/src/Makefile.am
bin_PROGRAMS = hello
hello_SOURCES = hello.c

configure.ac (v=1.6):

$ cat debhello-1.6/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.1],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])
AM_INIT_AUTOMAKE([foreign])
Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
echo "Add --with-math option functionality to ./configure"
AC_ARG_WITH([math],
[AS_HELP_STRING([--with-math],
[compile with math library @<:@default=yes@:>@])],

[],
[with_math="yes"]
)

echo "==== withval := \"$withval\""
echo "==== with_math := \"$with_math\""
m4sh if-else construct
AS_IF([test "x$with_math" != "xno"],[
echo "==== Check include: math.h"
AC_CHECK_HEADER(math.h,[],[
AC_MSG_ERROR([Couldn't find math.h.])

])
echo "==== Check library: libm"
AC_SEARCH_LIBS(atan, [m])
#AC_CHECK_LIB(m, atan)
echo "==== Build with LIBS := \"$LIBS\""
AC_DEFINE(WITH_MATH, [1], [Build with the math library])

],[
echo "==== Skip building with math.h."
AH_TEMPLATE(WITH_MATH, [Build without the math library])

])
Checks for programs.
AC_PROG_CC
AC_CONFIG_FILES([Makefile

man/Makefile
src/Makefile])

AC_OUTPUT

113

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

Подсказка

Without «foreign» strictness level specified in AM_INIT_AUTOMAKE() as
above, automake defaults to «gnu» strictness level requiring several files in the
top-level directory. See «3.2 Strictness» in the automake document.

Создадим пакет из этого исходного кода с помощью команды debmake.

$ cd /path/to/debhello-1.6
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.6", rev="1"
I: *** start packaging in "debhello-1.6". ***
I: provide debhello_1.6.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.6.tar.gz debhello_1.6.orig.tar.gz
I: pwd = "/path/to/debhello-1.6"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = Autotools with autoreconf
I: scan source for copyright+license text and file extensions
I: 33 %, ext = am
...

Получившийся результат похож на то, что было описано в «Раздел 14.8», но не совпадает с
ним в точности.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.6):

$ cd /path/to/debhello-1.6
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@ --with autoreconf

#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.6):

$ cd /path/to/debhello-1.6
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@ --with autoreconf

114

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.10. CMAKE (SINGLE-BINARY PACKAGE)

override_dh_auto_configure:
dh_auto_configure -- \

--with-math

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Остальные работы по подготовке пакета практически полностью совпадают с описанными в

«Раздел 5.8».

14.10 CMake (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using CMake
(CMakeLists.txt and some files such as config.h.in) as its build system.

The cmake command generates the Makefile file based on the CMakeLists.txt file and its -D option.
It also configures the file as specified in its configure_file(…) by replacing strings with @… @ and
changing the #cmakedefine … line.

Допустим tar-архив основной ветки имеет имя debhello-1.7.tar.gz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

$ tar -xzmf debhello-1.7.tar.gz
$ cd debhello-1.7
$ mkdir obj-x86_64-linux-gnu # for out-of-tree build
$ cd obj-x86_64-linux-gnu
$ cmake ..
$ make
$ make install

Получитм исходный код и создадим пакет Debian.
Загрузим debhello-1.7.tar.gz

$ wget http://www.example.org/download/debhello-1.7.tar.gz
...
$ tar -xzmf debhello-1.7.tar.gz
$ tree
.
+-- debhello-1.7
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in
| +-- hello.c
+-- debhello-1.7.tar.gz

5 directories, 11 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=1.7):

$ cat debhello-1.7/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()

115

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.10. CMAKE (SINGLE-BINARY PACKAGE)

{
printf("Hello, I am " PACKAGE_AUTHOR "!\n");

#ifdef WITH_MATH
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));

#else
printf("I can't do MATH!\n");

#endif
return 0;

}

src/config.h.in (v=1.7):
$ cat debhello-1.7/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"
/* math library support */
#cmakedefine WITH_MATH

CMakeLists.txt (v=1.7):
$ cat debhello-1.7/CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(src)
add_subdirectory(man)
$ cat debhello-1.7/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
$ cat debhello-1.7/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Interactively define WITH_MATH
option(WITH_MATH "Build with math support" OFF)
#variable_watch(WITH_MATH)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"

)
include_directories("${CMAKE_CURRENT_BINARY_DIR}")
add_executable(hello hello.c)
install(TARGETS hello
RUNTIME DESTINATION bin

)

Создадим пакет из этого исходного кода с помощью команды debmake.

$ cd /path/to/debhello-1.7
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.7", rev="1"
I: *** start packaging in "debhello-1.7". ***
I: provide debhello_1.7.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.7.tar.gz debhello_1.7.orig.tar.gz
I: pwd = "/path/to/debhello-1.7"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = Cmake
I: scan source for copyright+license text and file extensions

116

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.10. CMAKE (SINGLE-BINARY PACKAGE)

I: 33 %, ext = text
...

Получившийся результат похож на то, что было описано в «Раздел 14.8», но не совпадает с
ним в точности.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.7):

$ cd /path/to/debhello-1.7
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"

debian/control (шаблонный файл, v=1.7):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
cmake,
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.7):

$ cd /path/to/debhello-1.7
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

117

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

override_dh_auto_configure:
dh_auto_configure -- -DWITH-MATH=1

debian/control (версия сопровждающего, v=1.7):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
cmake,
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Остальные работы по подготовке пакета практически полностью совпадают с описанными в

«Раздел 14.8».

14.11 Autotools (multi-binary package)
Here is an example of creating a set of Debian binary packages including the executable package, the
shared library package, the development file package, and the debug symbol package from a simple C
source program using Autotools (Autoconf and Automake, which use Makefile.am and configure.ac as
their input files) as its build system.

Let’s package this in a similar way to «Раздел 14.9».
Допустим tar-архив основной ветки имеет имя debhello-2.0.tar.gz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

$ tar -xzmf debhello-2.0.tar.gz
$ cd debhello-2.0
$ autoreconf -ivf # optional
$./configure --with-math
$ make
$ make install

Получитм исходный код и создадим пакет Debian.
Загрузим debhello-2.0.tar.gz

$ wget http://www.example.org/download/debhello-2.0.tar.gz
...
$ tar -xzmf debhello-2.0.tar.gz
$ tree
.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md

118

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.gz

6 directories, 14 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=2.0):

$ cat debhello-2.0/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

lib/sharedlib.h и lib/sharedlib.c (v=1.6):
$ cat debhello-2.0/lib/sharedlib.h
int sharedlib();
$ cat debhello-2.0/lib/sharedlib.c
#include <stdio.h>
int
sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

Makefile.am (v=2.0):
$ cat debhello-2.0/Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = lib src man
$ cat debhello-2.0/man/Makefile.am
manpages (distributed in the source package)
dist_man_MANS = hello.1
$ cat debhello-2.0/lib/Makefile.am
libtool librares to be produced
lib_LTLIBRARIES = libsharedlib.la

source files used for lib_LTLIBRARIES
libsharedlib_la_SOURCES = sharedlib.c

C pre-processor flags used for lib_LTLIBRARIES
#libsharedlib_la_CPPFLAGS =

Headers files to be installed in <prefix>/include
include_HEADERS = sharedlib.h

119

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

Versioning Libtool Libraries with version triplets
libsharedlib_la_LDFLAGS = -version-info 1:0:0
$ cat debhello-2.0/src/Makefile.am
program executables to be produced
bin_PROGRAMS = hello

source files used for bin_PROGRAMS
hello_SOURCES = hello.c

C pre-processor flags used for bin_PROGRAMS
AM_CPPFLAGS = -I$(srcdir) -I$(top_srcdir)/lib

Extra options for the linker for hello
hello_LDFLAGS =

Libraries the `hello` binary to be linked
hello_LDADD = $(top_srcdir)/lib/libsharedlib.la

configure.ac (v=2.0):
$ cat debhello-2.0/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

only for the recursive case
AC_CONFIG_FILES([Makefile

lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

Let’s use the debmake command to package this into multiple packages:

• debhello: type = bin

• libsharedlib1: type = lib

• libsharedlib-dev: type = dev

Here, we use the -b’libsharedlib1,libsharedlib-dev’ option to specify the additional binary packages
to be generated.

120

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

$ cd /path/to/debhello-2.0
$ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="2.0", rev="1"
I: *** start packaging in "debhello-2.0". ***
I: provide debhello_2.0.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-2.0.tar.gz debhello_2.0.orig.tar.gz
I: pwd = "/path/to/debhello-2.0"
I: parse binary package settings: ,libsharedlib1,libsharedlib-dev
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: analyze the source tree
I: build_type = Autotools with autoreconf
...

Получившийся результат похож на то, что было описано в «Раздел 14.8», но имеет большее
количество шаблонных файлов.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=2.0):

$ cd /path/to/debhello-2.0
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@ --with autoreconf

#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=2.0):

$ cd /path/to/debhello-2.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@ --with autoreconf

override_dh_missing:
dh_missing -X.la

debian/control (версия сопровождающего, v=2.0):
$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel

121

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
dh-autoreconf,
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any
Multi-Arch: same
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (версия сопровождающего, v=2.0):
$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included

122

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debian/install and debian/manpages files.

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шабонные файлы в каталоге debian/. (v=2.0):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- debhello.dirs
+-- debhello.doc-base
+-- debhello.docs
+-- debhello.examples
+-- debhello.info
+-- debhello.install
+-- debhello.links
+-- debhello.manpages
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 22 files

Остальные работы по подготовке пакета практически полностью совпадают с описанными в
«Раздел 14.8».

Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.0):

$ dpkg -f debhello-dbgsym_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.0-1)
$ dpkg -f debhello_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1), libc6 (>= 2.34)
$ dpkg -f libsharedlib-dev_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)
$ dpkg -f libsharedlib1-dbgsym_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)

123

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.12. CMAKE (MULTI-BINARY PACKAGE)

$ dpkg -f libsharedlib1_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libc6 (>= 2.2.5)

14.12 CMake (multi-binary package)
This example demonstrates creating a set of Debian binary packages including the executable package,
the shared library package, the development file package, and the debug symbol package from a simple
C source program using CMake (CMakeLists.txt and files such as config.h.in) as its build system.

Допустим tar-архив основной ветки имеет имя debhello-2.1.tar.gz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

$ tar -xzmf debhello-2.1.tar.gz
$ cd debhello-2.1
$ mkdir obj-x86_64-linux-gnu
$ cd obj-x86_64-linux-gnu
$ cmake ..
$ make
$ make install

Получитм исходный код и создадим пакет Debian.
Загрузим debhello-2.1.tar.gz

$ wget http://www.example.org/download/debhello-2.1.tar.gz
...
$ tar -xzmf debhello-2.1.tar.gz
$ tree
.
+-- debhello-2.1
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- CMakeLists.txt
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in
| +-- hello.c
+-- debhello-2.1.tar.gz

6 directories, 14 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=2.1):

$ cat debhello-2.1/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

124

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.12. CMAKE (MULTI-BINARY PACKAGE)

}

src/config.h.in (v=2.1):

$ cat debhello-2.1/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"

lib/sharedlib.c и lib/sharedlib.h (v=2.1):

$ cat debhello-2.1/lib/sharedlib.h
int sharedlib();
$ cat debhello-2.1/lib/sharedlib.c
#include <stdio.h>
int
sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

CMakeLists.txt (v=2.1):

$ cat debhello-2.1/CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(lib)
add_subdirectory(src)
add_subdirectory(man)
$ cat debhello-2.1/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
$ cat debhello-2.1/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"
)

include_directories("${CMAKE_CURRENT_BINARY_DIR}")
include_directories("${CMAKE_SOURCE_DIR}/lib")

add_executable(hello hello.c)
target_link_libraries(hello sharedlib)
install(TARGETS hello
RUNTIME DESTINATION bin

)

Создадим пакет из этого исходного кода с помощью команды debmake.

$ cd /path/to/debhello-2.1
$ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="2.1", rev="1"
I: *** start packaging in "debhello-2.1". ***
I: provide debhello_2.1.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-2.1.tar.gz debhello_2.1.orig.tar.gz
I: pwd = "/path/to/debhello-2.1"
I: parse binary package settings: ,libsharedlib1,libsharedlib-dev

125

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.12. CMAKE (MULTI-BINARY PACKAGE)

I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: analyze the source tree
I: build_type = Cmake
...

Получившийся результат похож на то, что было описано в «Раздел 14.8», но не совпадает с
ним в точности.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=2.1):

$ cd /path/to/debhello-2.1
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=2.1):

$ cd /path/to/debhello-2.1
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed
DEB_HOST_MULTIARCH ?= $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_HOST_MULTIARCH)"

debian/control (версия сопровождающего, v=2.1):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
cmake,
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

126

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.12. CMAKE (MULTI-BINARY PACKAGE)

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any
Multi-Arch: same
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (версия сопровождающего, v=2.1):

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

127

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.12. CMAKE (MULTI-BINARY PACKAGE)

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The upstream CMakeLists.txt file needs to be patched to handle the multiarch path correctly.
debian/patches/* (версия сопровождающего, v=2.1):

... hack, hack, hack, ...
$ cat debian/libsharedlib1.symbols
libsharedlib.so.1 libsharedlib1 #MINVER#
sharedlib@Base 2.1

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debian/install and debian/manpages files.

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шаблонные файлы в каталоге debian/. (v=2.1):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- debhello.dirs
+-- debhello.doc-base
+-- debhello.docs
+-- debhello.examples
+-- debhello.info
+-- debhello.install
+-- debhello.links
+-- debhello.manpages
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- patches/
| +-- 000-cmake-multiarch.patch
| +-- series
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

5 directories, 24 files

Остальные работы по подготовке пакета практически полностью совпадают с описанными в
«Раздел 14.8».

Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.1):

$ dpkg -f debhello-dbgsym_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.1-1)
$ dpkg -f debhello_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1), libc6 (>= 2.34)
$ dpkg -f libsharedlib-dev_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
$ dpkg -f libsharedlib1-dbgsym_2.1-1_amd64.deb pre-depends \

128

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
$ dpkg -f libsharedlib1_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.2.5)

14.13 Интернационализация
Here is an example of updating the simple upstream C source debhello-2.0.tar.gz presented in «Раз-
дел 14.11» for internationalization (i18n) and creating the updated upstream C source debhello-2.0.tar.gz.

In the real situation, the package should already be internationalized. So this example is educational
for you to understand how this internationalization is implemented.

Подсказка

The routine maintainer activity for the i18n is simply to add translation po files
reported to you via the Bug Tracking System (BTS) to the po/ directory and to
update the language list in the po/LINGUAS file.

Получитм исходный код и создадим пакет Debian.
Загрузим debhello-2.0.tar.gz (i18n)

$ wget http://www.example.org/download/debhello-2.0.tar.gz
...
$ tar -xzmf debhello-2.0.tar.gz
$ tree
.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.gz

6 directories, 14 files

Internationalize this source tree with the gettextize command and remove files auto-generated by
Autotools.

запустим gettextize (i18n):

$ cd /path/to/debhello-2.0
$ gettextize
Creating po/ subdirectory
Creating build-aux/ subdirectory
Copying file ABOUT-NLS
Copying file build-aux/config.rpath
Not copying intl/ directory.

129

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

Copying file po/Makefile.in.in
Copying file po/Makevars.template
Copying file po/Rules-quot
Copying file po/boldquot.sed
Copying file po/en@boldquot.header
Copying file po/en@quot.header
Copying file po/insert-header.sin
Copying file po/quot.sed
Copying file po/remove-potcdate.sin
Creating initial po/POTFILES.in
Creating po/ChangeLog
Creating directory m4
Copying file m4/gettext.m4
Copying file m4/iconv.m4
Copying file m4/lib-ld.m4
Copying file m4/lib-link.m4
Copying file m4/lib-prefix.m4
Copying file m4/nls.m4
Copying file m4/po.m4
Copying file m4/progtest.m4
Creating m4/ChangeLog
Updating Makefile.am (backup is in Makefile.am~)
Updating configure.ac (backup is in configure.ac~)
Creating ChangeLog

Please use AM_GNU_GETTEXT([external]) in order to cause autoconfiguration
to look for an external libintl.

Please create po/Makevars from the template in po/Makevars.template.
You can then remove po/Makevars.template.

Please fill po/POTFILES.in as described in the documentation.

Please run 'aclocal' to regenerate the aclocal.m4 file.
You need aclocal from GNU automake 1.9 (or newer) to do this.
Then run 'autoconf' to regenerate the configure file.

You will also need config.guess and config.sub, which you can get from the CV...
of the 'config' project at http://savannah.gnu.org/. The commands to fetch th...
are
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...

You might also want to copy the convenience header file gettext.h
from the /usr/share/gettext directory into your package.
It is a wrapper around <libintl.h> that implements the configure --disable-nl...
option.

Press Return to acknowledge the previous 6 paragraphs.
$ rm -rf m4 build-aux *~

Проверим созданные файлы в каталоге po/.
файлы в каталоге po (i18n):

$ ls -l po
total 60
-rw-rw-r-- 1 osamu osamu 494 Nov 29 07:59 ChangeLog
-rw-rw-r-- 1 osamu osamu 17577 Nov 29 07:59 Makefile.in.in
-rw-rw-r-- 1 osamu osamu 3376 Nov 29 07:59 Makevars.template
-rw-rw-r-- 1 osamu osamu 59 Nov 29 07:59 POTFILES.in
-rw-rw-r-- 1 osamu osamu 2203 Nov 29 07:59 Rules-quot
-rw-rw-r-- 1 osamu osamu 217 Nov 29 07:59 boldquot.sed
-rw-rw-r-- 1 osamu osamu 1337 Nov 29 07:59 en@boldquot.header
-rw-rw-r-- 1 osamu osamu 1203 Nov 29 07:59 en@quot.header
-rw-rw-r-- 1 osamu osamu 672 Nov 29 07:59 insert-header.sin

130

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

-rw-rw-r-- 1 osamu osamu 153 Nov 29 07:59 quot.sed
-rw-rw-r-- 1 osamu osamu 432 Nov 29 07:59 remove-potcdate.sin

Let’s update the configure.ac by adding «AM_GNU_GETTEXT([external])», etc..
configure.ac (i18n):

$ vim configure.ac
... hack, hack, hack, ...
$ cat configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

desktop file support required
AM_GNU_GETTEXT_VERSION([0.19.3])
AM_GNU_GETTEXT([external])

only for the recursive case
AC_CONFIG_FILES([Makefile

po/Makefile.in
lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

Let’s create the po/Makevars file from the po/Makevars.template file.
po/Makevars (i18n):

... hack, hack, hack, ...
$ diff -u po/Makevars.template po/Makevars
--- po/Makevars.template 2024-11-29 07:59:15.133577084 +0000
+++ po/Makevars 2024-11-29 07:59:15.209578283 +0000
@@ -18,14 +18,14 @@
or entity, or to disclaim their copyright. The empty string stands for
the public domain; in this case the translators are expected to disclaim
their copyright.
-COPYRIGHT_HOLDER = Free Software Foundation, Inc.
+COPYRIGHT_HOLDER = Osamu Aoki <osamu@debian.org>

This tells whether or not to prepend "GNU " prefix to the package
name that gets inserted into the header of the $(DOMAIN).pot file.
Possible values are "yes", "no", or empty. If it is empty, try to

131

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

detect it automatically by scanning the files in $(top_srcdir) for
"GNU packagename" string.
-PACKAGE_GNU =
+PACKAGE_GNU = no

This is the email address or URL to which the translators shall report
bugs in the untranslated strings:
$ rm po/Makevars.template

Let’s update C sources for the i18n version by wrapping strings with _(…).
src/hello.c (i18n):

... hack, hack, hack, ...
$ cat src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
#include <libintl.h>
#define _(string) gettext (string)
int
main()
{

printf(_("Hello, I am " PACKAGE_AUTHOR "!\n"));
sharedlib();
return 0;

}

lib/sharedlib.c (i18n):

... hack, hack, hack, ...
$ cat lib/sharedlib.c
#include <stdio.h>
#include <libintl.h>
#define _(string) gettext (string)
int
sharedlib()
{

printf(_("This is a shared library!\n"));
return 0;

}

The new gettext (v=0.19) can handle the i18n version of the desktop file directly.
data/hello.desktop.in (i18n):

$ fgrep -v '[ja]=' data/hello.desktop > data/hello.desktop.in
$ rm data/hello.desktop
$ cat data/hello.desktop.in
[Desktop Entry]
Name=Hello
Comment=Greetings
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Приведём список входных файлов для извлечения переводных строк в po/POTFILES.in.
po/POTFILES.in (i18n):

... hack, hack, hack, ...
$ cat po/POTFILES.in
src/hello.c
lib/sharedlib.c
data/hello.desktop.in

132

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

Here is the updated root Makefile.am with po added to the SUBDIRS environment variable.
Makefile.am (i18n):

$ cat Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = po lib src man

ACLOCAL_AMFLAGS = -I m4

EXTRA_DIST = build-aux/config.rpath m4/ChangeLog

Let’s make a translation template file, debhello.pot.
po/debhello.pot (i18n):

$ xgettext -f po/POTFILES.in -d debhello -o po/debhello.pot -k_
Warning: program compiled against libxml 212 using older 209
$ cat po/debhello.pot
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2024-11-29 07:59+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:9
#, c-format
msgid "Hello, I am "
msgstr ""

#: lib/sharedlib.c:7
#, c-format
msgid "This is a shared library!\n"
msgstr ""

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr ""

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

Let’s add a translation for French.
po/LINGUAS и po/fr.po (i18n):

$ echo 'fr' > po/LINGUAS
$ cp po/debhello.pot po/fr.po
$ vim po/fr.po
... hack, hack, hack, ...

133

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.14. ДЕТАЛИ

$ cat po/fr.po
SOME DESCRIPTIVE TITLE.
This file is put in the public domain.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
msgid ""
msgstr ""
"Project-Id-Version: debhello 2.2\n"
"Report-Msgid-Bugs-To: foo@example.org\n"
"POT-Creation-Date: 2015-03-01 20:22+0900\n"
"PO-Revision-Date: 2015-02-21 23:18+0900\n"
"Last-Translator: Osamu Aoki <osamu@debian.org>\n"
"Language-Team: French <LL@li.org>\n"
"Language: ja\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:34
#, c-format
msgid "Hello, my name is %s!\n"
msgstr "Bonjour, je m'appelle %s!\n"

#: lib/sharedlib.c:29
#, c-format
msgid "This is a shared library!\n"
msgstr "Ceci est une bibliothèque partagée!\n"

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr "Salutations"

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

#: data/hello.desktop.in:9
msgid "hello.png"
msgstr ""

Работа над подготовкой пакета практически полностью совпадает с тем, что описывается в
«Раздел 14.11».

You can find more i18n examples by following «Раздел 14.14».

14.14 Детали
You can obtain detailed information about the examples presented and their variants as follows:

Как получить детали
$ apt-get source debmake-doc
$ cd debmake-doc*
$ cd examples
$ view examples/README.md

Follow the exact instruction in examples/README.md.

$ cd examples
$ make

Now, each directory named as examples/debhello-?.?_build-? contains the Debian packaging example.

134

ГЛАВА 14. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 14.14. ДЕТАЛИ

• эмулированный журнал активности командной строки консоли: файл .log

• эмулированный журнал активности командной строки консоли (короткий): файл .slog

• срез образа дерева исходного кода после выполнения команды debmake: каталог debmake

• snapshot source tree image after proper packaging: the package directory

• срез образа дерева исходного кода после выполнения команды debuild: каталог test

Notable examples include:

• POSIX shell script with Makefile and i18n support (v=3.0)

• C source with Makefile.in + configure and i18n support (v=3.2)

• C source with Autotools and i18n support (v=3.3)

• C source with CMake and i18n support (v=3.4)

135

Глава 15

Страница руководства debmake(1)

15.1 НАЗВАНИЕ
debmake - program to make a Debian source package

15.2 СИНТАКСИС
debmake [-h] [-c | -k] [-n | -a package-version.orig.tar.gz | -d | -t] [-p package] [-u version] [-r revision]
[-z extension] [-b ”binarypackage[:type], …]” [-e foo@example.org] [-f ”firstname lastname”] [-i ”buildtool”
| -j] [-l license_file] [-m] [-o file] [-q] [-s] [-v] [-w ”addon, … ”] [-x [01234]] [-y] [-L] [-P] [-T]

15.3 ОПИСАНИЕ
debmake помогает собрать пакет Debian из исходного кода основной ветки разработки. Обычно
это делается следующим образом:

• Загружается tar-архив основной ветки разработки в виде файла пакет-версия.tar.gz.

• Исходный код распаковывается, создаются файлы в каталоге пакет-версия/.

• Вызывается debmake в каталоге пакет-версия/, возможно, без аргументов.

• Файлы в каталоге package-version/debian/ настраиваются вручную.

• dpkg-buildpackage (usually from its wrapper debuild or sbuild) is invoked in the package-version/
directory to make Debian packages.

Обязательно защитите путём соответствующего включения в кавычки аргументы опций -b, -f,
-l и -w от вмешательства командной оболочки.

15.3.1 необязательные аргументы:

-h, --help показать справочное сообщение и выйти.

-c, --copyright сканировать исходный код на предмет текста об авторском праве и лицензирова-
нии и выйти.

• -c: простой стиль вывода
• -cc: обычный стиль вывода (схож с файлом debian/copyright)
• -ccc: отладочный стиль вывода

-k, --kludge сравнить файл debian/copyright с исходным кодом и выйти.
Файл debian/copyright должен быть организован таким образом, что наиболее общие фай-
ловые шаблоны размещаются раньше конкретных исключений.

136

ГЛАВА 15. СТРАНИЦА РУКОВОДСТВА … 15.3. ОПИСАНИЕ

• -k: простой стиль вывода
• -kk: подробный стиль вывода

-n, --native make a native Debian source package without .orig.tar.gz. This makes a Debian source
format «3.0 (native)» package.
If you are thinking of packaging a Debian-specific source tree with debian/ in it into a native Debian
package, please think otherwise. You can use the «debmake -d -i debuild» or «debmake -t -i
debuild» commands to make a Debian non-native package using the Debian source format «3.0
(quilt)» The only difference is that the debian/changelog file must use the non-native version
scheme: version-revision. The non-native package is more friendly to downstream distributions.

-a пакет-версия.tar.gz, --archive пакет-версия.tar.gz использовать непосредственно tar-архив
с исходным кодом основной ветки. (отменяются опции -p, -u, -z)
The upstream tarball may be specified as package_version.orig.tar.gz and tar.gz. For other cases,
it may be tar.bz2, or tar.xz.
Если в имени указанного tar-архива основной ветки содержатся буквы в верхнем регистре,
то в имени пакета Debian они будут преобразованы в буквы нижнего регистра.
If the specified argument is the URL (http://, https://, or ftp://) to the upstream tarball,
the upstream tarball is downloaded from the URL using wget or curl.

-d, --dist run the «make dist» command equivalents first to generate the upstream tarball and use it.
The «debmake -d» command is designed to run in the package/ directory hosting the upstream
VCS with the build system supporting the «make dist» command equivalents. (automake/autoconf,
…)

-t, --tar run the «tar» command to generate the upstream tarball and use it.
The «debmake -t» command is designed to run in the package/ directory hosting the upstream
VCS. Unless you provide the upstream version with the -u option or with the debian/changelog file,
a snapshot upstream version is generated in the 0\~%y%m%d%H%M format, e.g., 0~1403012359,
from the UTC date and time. The generated tarball excludes the debian/ directory found in the
upstream VCS. (It also excludes typical VCS directories: .git/, .hg/, .svn/, .CVS/.)

-p пакет, --package пакет установить имя пакета Debian.

-u версия, --upstreamversion версия установить версию пакета основной ветки.

-r редакция, --revision редакция установить номер редации пакета Debian.

-z расширение, --targz расширение set the tarball type, extension=(tar.gz|tar.bz2|tar.xz). (alias: z,
b, x)

-b ”binarypackage[:type],… ”, --binaryspec ”binarypackage[:type],… ” set the binary package specs
by a comma separated list of binarypackage:type pairs. Here, binarypackage is the binary package
name, and the optional type is chosen from the following type values:

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev: пакет с библиотекой разработки (any, same) (псевдоним: de)
• doc: пакет документации (all, foreign) (псевдоним: do)
• lib: пакет с библиотекой (any, same) (псевдоним: l)
• perl: пакет со сценарием на языке Perl (all, foreign) (псевдоним: pl)
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby: пакет со сценарием на языке Ruby (all, foreign) (псевдоним: rb)
• nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
• script: Shell and other interpreted language script package (all, foreign) (alias: sh)

137

ГЛАВА 15. СТРАНИЦА РУКОВОДСТВА … 15.3. ОПИСАНИЕ

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch
stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:

• Generating an executable binary package foo:
– «-b’foo:bin’», or its short form ˋ-b’-’ˋ”, or no -b option

• Generating an executable (python3) binary package python3-foo:
– «-b’python3-foo:py’», or its short form «-b’python3-foo’»

• Generating a data package foo:
– «-b’foo:data’», or its short form «-b’-:data’»

• Generating a executable binary package foo and a documentation one foo-doc:
– «-b’foo:bin,foo-doc:doc’», or its short form «-b’-:-doc’»

• Generating a executable binary package foo, a library package libfoo1, and a library development
package libfoo-dev:

– «-b’foo:bin,libfoo1:lib,libfoo-dev:dev’» or its short form «-b’-,libfoo1,libfoo-dev’»

Если содержимое дерева исходного кода не совпадает с настройками поля тип, то команда
debmake выводит предупреждение.

-e foo@example.org, --email foo@example.org установить адрес электронной почты.
По умолчанию берётся значение переменной окружения $DEBEMAIL.

-f ”имя фамилия”, --fullname ”имя фамилия” установить имя и фамилию.
По умолчанию берётся значение переменной окружения $DEBFULLNAME.

-i ”инструментсборки”, --invoke ”инструментсборки” invoke ”buildtool” at the end of execution.
buildtool may be «dpkg-buildpackage», «debuild», «sbuild», etc.
По умолчанию никакая программа не выполняется.
Передача этой опции автоматически приводит к передаче опции --local.

-j, --judge запустить dpkg-depcheck для выявления сборочных зависимостей и определения пу-
тей файлов. Файлы журнала располагаются в родительском каталоге.

• package.build-dep.log: файл журнала dpkg-depcheck.
• package.install.log: файл журнала, в который записываются файлы из каталога debian/tmp.

-l ”license_file,… ”, --license ”license_file,… ” add formatted license text to the end of the debian/copyright
file holding license scan results.
The default is to add COPYING and LICENSE, and license_file needs to list only the additional file
names all separated by «,».

-m, --monoarch подготовить пакеты без поддержки мультиархитектурности.

-o файл, --option файл read optional parameters from file. (This is not for everyday use.)
The content of file is sourced as the Python code at the end of para.py. For example, the package
description can be specified by the following file.

para['desc'] = 'program short description'
para['desc_long'] = '''\
program long description which you wish to include.
.
Empty line is space + .
You keep going on ...
'''

138

ГЛАВА 15. СТРАНИЦА РУКОВОДСТВА … 15.4. ПРИМЕРЫ

-q, --quitearly выйти до создания файлов в каталоге debian/.

-s, --spec use upstream spec (pyproject.py for Python, etc.) for the package description.

-v, --version показать информацию о версии.

-w ”addon,… ”, --with ”addon,… ” добавить дополнительные аргументы опции --with команды dh(1)
в качестве дополнений в файл debian/rules.
The addon values are listed all separated by «,», e.g., «-w ”python3,autoreconf”».
For Autotools based packages, autoreconf as addon to run «autoreconf -i -v -f» for every package
building is default behavior of the dh(1) command.
For Autotools based packages, if they install Python (version 3) programs, setting python3 as
addon to the debmake command argument is needed since this is non-obvious. But for pyproject.toml
based Python packages, setting python3 as addon to the debmake command argument is not
needed since this is obvious and the debmake command automatically set it to the dh(1) command.

-x n, --extra n generate configuration files as templates. (Please note debian/changelog, debian/control,
debian/copyright, and debian/rules are bare minimum configuration files to build a Debian binary
package.)
The number n determines which configuration templates are generated.

• -x0: all required configuration template files. (selected option if any of these files already exist)
• -x1: all -x0 files + desirable configuration template files with binary package type supports.
• -x2: all -x1 files + normal configuration template files with maintainer script supports.
• -x3: all -x2 files + optional configuration template files. (default option)
• -x4: all -x3 files + deprecated configuration template files.

Some configuration template files are generated with the extra .ex suffix to ease their removal.
To activate these, rename their file names to the ones without the .ex suffix and edit their contents.
Existing configuration files are never overwritten. If you wish to update some of the existing configuration
files, please rename them before running the debmake command and manually merge the generated
configuration files with the old renamed ones.

-y, --yes «force yes» for all prompts. (without option: «ask [Y/n]»; doubled option: «force no»)

-L, --local создать файлы настройки для локального пакета, чтобы перехитрить проверки lintian(1).

-P, --pedantic педантично проверять автоматически создаваемые файлы.

-T, --tutorial output tutorial comment lines in template files. default when -x3 or -x4 is set.

15.4 ПРИМЕРЫ
For a well behaving source, you can build a good-for-local-use installable single Debian binary package
easily with one command. Test install of such a package generated in this way offers a good alternative to
the traditional «make install» command installing into the /usr/local directory since the Debian package
can be removed cleanly by the «dpkg -P ’… ’» command. Here are some examples of how to build such
test packages. (These should work in most cases. If the -d option does not work, try the -t option instead.)

For a typical C program source tree packaged with autoconf/automake:

• debmake -d -i debuild

For a typical Python (version 3) module source tree:

• debmake -s -d -b”:python3” -i debuild

For a typical Python (version 3) module in the package-version.tar.gz archive:

• debmake -s -a package-version.tar.gz -b”:python3” -i debuild

Для обычного модуля языка Perl в виде архива пакет-версия.tar.gz:

• debmake -a package-version.tar.gz -b”:perl” -i debuild

139

ГЛАВА 15. СТРАНИЦА РУКОВОДСТВА … 15.5. ВСПОМОГАТЕЛЬНЫЕ ПАКЕТЫ

15.5 ВСПОМОГАТЕЛЬНЫЕ ПАКЕТЫ
Для работы над пакетами может потребоваться установка некоторых дополнительных специали-
зированных вспомогательных пакетов.

• Python (version 3) programs may require the pybuild-plugin-pyproject package.

• The Autotools (autoconf + automake) build system may require autotools-dev or dh-autoreconf
package.

• Ruby programs may require the gem2deb package.

• Node.js based JavaScript programs may require the pkg-js-tools package.

• Java programs may require the javahelper package.

• Для программ для окружения Gnome может потребоваться пакет gobject-introspection.

• и т. д.

15.6 ПРЕДОСТЕРЕЖЕНИЯ
Although debmake is meant to provide template files for the package maintainer to work on, actual
packaging activities are often performed without using debmake while referencing only existing similar
packages and «Debian Policy Manual». All template files generated by debmake are required to be
modified manually.

There are 2 positive points for debmake:

• debmake helps to write terse packaging tutorial «Guide for Debian Maintainers» (debmake-doc
package).

• debmake provides short extracted license texts as debian/copyright in decent accuracy to help
license review.

Please double check copyright with the licensecheck(1) command.
There are some limitations for what characters may be used as a part of the Debian package. The

most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in «Chapter 5 - Control files and their fields» in the «Debian Policy Manual».
debmake assumes relatively simple packaging cases. So all programs related to the interpreter are

assumed to be «Architecture: all». This is not always true.

15.7 ОТЛАДКА
Сообщения об ошибках отправляйте с помощью команды reportbug для пакета debmake.

Набор символов в переменной окружении $DEBUG определяет уровень вывода журнала.

• i: main.py logging

• p: para.py logging

• s: checkdep5.py check_format_style() logging

• y: checkdep5.py split_years_name() logging

140

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/debian-policy/#document-ch-controlfields

ГЛАВА 15. СТРАНИЦА РУКОВОДСТВА … 15.8. АВТОР

• b: checkdep5.py parse_lines() 1 logging — content_state scan loop: begin-loop

• m: checkdep5.py parse_lines() 2 logging — content_state scan loop: after regex match

• e: checkdep5.py parse_lines() 3 logging — content_state scan loop: end-loop

• a: checkdep5.py parse_lines() 4 logging — print author/translator section text

• f: checkdep5.py check_all_license() 1 logging — input filename for the copyright scan

• l: checkdep5.py check_all_license() 2 logging — print license section text

• c: checkdep5.py check_all_license() 3 logging — print copyright section text

• k: checkdep5.py check_all_license() 4 logging — sort key for debian/copyright stanza

• r: sed.py logging

• w: cat.py logging

• n: kludge.py logging («debmake -k»)

Use this feature as:

$ DEBUG=ipsybmeaflckrwn debmake ...

See README.developer in the source for more.

15.8 АВТОР
Copyright © 2014-2024 Osamu Aoki <osamu@debian.org>

15.9 ЛИЦЕНЗИЯ
Лицензия Expat

15.10 СМОТРИТЕ ТАКЖЕ
The debmake-doc package provides the «Guide for Debian Maintainers» in plain text, HTML and PDF
formats under the /usr/share/doc/debmake-doc/ directory.

See also dpkg-source(1), deb-control(5), debhelper(7), dh(1), dpkg-buildpackage(1), debuild(1),
quilt(1), dpkg-depcheck(1), sbuild(1), gbp-buildpackage(1), and gbp-pq(1) manpages.

141

mailto:osamu@debian.org
https://www.debian.org/doc/manuals/debmake-doc/

Глава 16

debmake options

Here are some additional explanations for debmake options.

16.1 Shortcut options (-a, -i)
Команда debmake предлагает 2 опции для выполнения быстрых действий.

• -a : открыть tar-архив основной ветки

• -i : выполнить сценарий для сборки двоичного пакета

Действия из примера, приведённого выше в «Глава 5», можно выполнить с помощью следую-
щей простой команды.

$ debmake -a package-1.0.tar.gz -i debuild

Подсказка

A URL such as «https://www.example.org/DL/package-1.0.tar.gz» may be
used for the -a option.

Подсказка

A URL such as «https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/-
3.fc21/src/ibus-1.5.7-3.fc21.src.rpm» may be used for the -a option, too.

16.2 debmake -b
The debmake command with the -b option provides an intuitive and flexible method to create the initial
template debian/control file. This file defines the split of the Debian binary packages with the following
stanzas:

• Package:

• Architecture: (e.g. amd64)

• Multi-Arch: (see «Раздел 10.10»)

• Depends:

142

https://www.example.org/DL/package-1.0.tar.gz
https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/3.fc21/src/ibus-1.5.7-3.fc21.src.rpm
https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/3.fc21/src/ibus-1.5.7-3.fc21.src.rpm

ГЛАВА 16. DEBMAKE OPTIONS 16.3. DEBMAKE -CC

• Pre-Depends:

The debmake command also sets an appropriate set of substvars (substitution variables) used in
each pertinent dependency stanza.

Ниже приводится цитата соответствующей части страницы руководства debmake.

-b ”binarypackage[:type],… ”, --binaryspec ”binarypackage[:type],… ” set the binary package specs
by a comma separated list of binarypackage:type pairs. Here, binarypackage is the binary package
name, and the optional type is chosen from the following type values:

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev: пакет с библиотекой разработки (any, same) (псевдоним: de)
• doc: пакет документации (all, foreign) (псевдоним: do)
• lib: пакет с библиотекой (any, same) (псевдоним: l)
• perl: пакет со сценарием на языке Perl (all, foreign) (псевдоним: pl)
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby: пакет со сценарием на языке Ruby (all, foreign) (псевдоним: rb)
• nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
• script: Shell and other interpreted language script package (all, foreign) (alias: sh)

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch
stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:

• Generating an executable binary package foo:
– «-b’foo:bin’», or its short form ˋ-b’-’ˋ”, or no -b option

• Generating an executable (python3) binary package python3-foo:
– «-b’python3-foo:py’», or its short form «-b’python3-foo’»

• Generating a data package foo:
– «-b’foo:data’», or its short form «-b’-:data’»

• Generating a executable binary package foo and a documentation one foo-doc:
– «-b’foo:bin,foo-doc:doc’», or its short form «-b’-:-doc’»

• Generating a executable binary package foo, a library package libfoo1, and a library development
package libfoo-dev:

– «-b’foo:bin,libfoo1:lib,libfoo-dev:dev’» or its short form «-b’-,libfoo1,libfoo-dev’»

Если содержимое дерева исходного кода не совпадает с настройками поля тип, то команда
debmake выводит предупреждение.

16.3 debmake -cc
The debmake command with the -cc option can make a summary of the copyright and license for the
entire source tree to standard output.

$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake -cc | less

Опция -c позволяет получить более краткий отчёт.

143

ГЛАВА 16. DEBMAKE OPTIONS 16.4. SNAPSHOT UPSTREAM TARBALL (-D, -T)

16.4 Snapshot upstream tarball (-d, -t)
This test building scheme is suitable for git repositories organized as described in gbp-buildpackage(7),
which uses the master, upstream, and pristine-tar branches.

The upstream snapshot from the upstream source tree in the upstream VCS can be made with the
-d option if the upstream supports the «make dist» equivalence.

$ cd /path/to/upstream-vcs
$ debmake -d -i debuild

С другой стороны, то же самое можно сделать с помощью опции -t в том случае, если с помо-
щью команды tar можно создать tar-архив основной ветки.

$ cd /path/to/upstream-vcs
$ debmake -p package -t -i debuild

Unless you provide the upstream version with the -u option or with the debian/changelog file, a
snapshot upstream version is generated in the 0~%y%m%d%H%M format, e.g., 0~1403012359, from
the UTC date and time.

If the upstream VCS is hosted in the package/ directory instead of the upstream-vcs/ directory, the
«-p package» can be skipped.

If the upstream source tree in the VCS contains the debian/* files, the debmake command with either
the -d option or the -t option combined with the -i option automates the making of a non-native Debian
package from the VCS snapshot while using these debian/* files.

$ cp -r /path/to/package-0~1403012359/debian/. /path/to/upstream-vcs/debian
$ dch
... update debian/changelog

$ git add -A .; git commit -m "vcs with debian/*"
$ debmake -t -p package -i debuild

This non-native Debian binary package building scheme without the real upstream tarball is considered
a quasi-native Debian package. See «Раздел 11.13» for more details.

16.5 debmake -j
This is an experimental feature.

The generation of a functioning multi-binary package always requires more manual work than that of
a functioning single binary package. The test build of the source package is the essential part of it.

Например, создадим пакет из того же архива package-1.0.tar.gz (см. «Глава 5») с поддержкой
набора из нескольких двоичных пакетов.

• Запустите команду debmake с опцией -j для выполнения тестовой сборки и создания отчёта.

$ debmake -j -a package-1.0.tar.gz

• Check the last lines of the package.build-dep.log file to judge build dependencies for Build-
Depends. (You do not need to list packages used by debhelper, perl, or fakeroot explicitly in
Build-Depends. This technique is useful for the generation of a single binary package, too.)

• Проверьте содержимое файла пакет.install.log для определения путей установки файлов,
чтобы решить, как разделить эти файлы на несколько пакетов.

• Начните работу над пакетом с помощью команды debmake.

$ rm -rf package-1.0
$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake -b"package1:type1, ..."

• Обновите файлы debian/control и debian/двоичныйпакет.install, используя полученную вы-
ше информацию.

144

ГЛАВА 16. DEBMAKE OPTIONS 16.6. DEBMAKE -K

• При необходимости обновите другие файлы debian/*.

• Build the Debian package with the debuild command or its equivalent.

$ debuild

• All binary package entries specified in the debian/binarypackage.install file are generated as
binarypackage_version-revision_arch.deb.

Замечание

The -j option for the debmake command invokes dpkg-depcheck(1) to run
debian/rules under strace(1) to obtain library dependencies. Unfortunately, this
is very slow. If you know the library package dependencies from other sources
such as the SPEC file in the source, you may just run the ”debmake … ” command
without the -j option and run the «debian/rules install» command to check the
install paths of the generated files.

16.6 debmake -k
This is an experimental feature.

При обновлении пакета до нового выпуска основной ветки команда debmake может проверить
содержимое существующего файла debian/copyright и сравнить его с информацией об авторских
правах и лицензировании для всего обновлённого дерева исходного кода целиком.

$ cd package-vcs
$ gbp import-orig --uscan --pristine-tar
... update source with the new upstream release
$ debmake -k | less

The «debmake -k» command parses the debian/copyright file from the top to the bottom and
compares the license of all the non-binary files in the current package with the license described in
the last matching file pattern entry of the debian/copyright file.

При редактировании автоматически созданного файла debian/copyright убедитесь, что наи-
более общие шаблоны файлов помещены в верхней части списка.

Подсказка

For all new upstream releases, run the «debmake -k» command to ensure that
the debian/copyright file is current.

16.7 debmake -P
Команда debmake, запущенная с опцией -P, педантично проверяет создаваемые автоматически
файлы на предмет наличия текста об автоских правах и лицензировании, даже если они подпа-
дают под действие разрешительной лицензии.

This option affects not only the content of the debian/copyright file generated by normal execution,
but also the output by the execution with the -k, -c, -cc, and -ccc options.

145

ГЛАВА 16. DEBMAKE OPTIONS 16.8. DEBMAKE -T

16.8 debmake -T
The debmake command invoked with the -T option additionally prints verbose tutorial comment lines.
The lines marked with ### in the template files are part of the verbose tutorial comment lines.

16.9 debmake -x
Количество шаблонных файлов, создаваемых командой debmake зависит от опции -x[01234].

• See «Раздел 14.1» for cherry-picking of the template files.

Замечание

Команда debmake не меняет ни один из существующих файлов настройки.

146

	Предисловие
	Обзор
	Необходимые предварительные требования
	Люди вокруг Debian
	Как принять участие
	Социальная динамика Debian
	Техническая памятка
	Документация Debian
	Справочные ресурсы
	Ситуация с архивом
	Подходы к участию
	Начинающий участник и сопровождающий

	Настройка инструментов
	Email setup
	mc setup
	git setup
	quilt setup
	devscripts setup
	sbuild setup
	Persistent chroot setup
	gbp setup
	HTTP-прокси
	Частный репозиторий Debian
	Virtual machines
	Local network with virtual machines

	Simple packaging
	Packaging tarball
	Общая картина
	Что такое debmake?
	Что такое debuild?
	Шаг 1: получение исходного кода основной ветки разработки
	Step 2: Generate template files with debmake
	Шаг 3: изменение шаблонных файлов
	Step 4: Building package with debuild
	Step 3 (alternatives): Modification to the upstream source
	Patch by «diff -u» approach
	Patch by dquilt approach
	Patch by «dpkg-source --auto-commit» approach

	Basics for packaging
	Работа по созданию пакета
	debhelper package
	Имя пакета и версия
	Родной пакет Debian
	debian/rules file
	debian/control file
	debian/changelog file
	debian/copyright file
	debian/patches/* files
	debian/source/include-binaries file
	debian/watch file
	debian/upstream/signing-key.asc file
	debian/salsa-ci.yml file
	Other debian/* files

	Quality of packaging
	Reformat debian/* files with wrap-and-sort
	Validate debian/* files with debputy

	Sanitization of the source
	Fix with Files-Excluded
	Fix with «debian/rules clean»
	Fix with extend-diff-ignore
	Fix with tar-ignore
	Fix with «git clean -dfx»

	More on packaging
	Package customization
	Customized debian/rules
	Variables for debian/rules
	Новый выпуск основной ветки
	Manage patch queue with dquilt
	Build commands
	Note on sbuild
	Special build cases
	Загрузите orig.tar.gz
	Пропущенные загрузки
	Bug reports

	Продвинутые темы работы над пакетом
	Historical perspective
	Current trends
	Note on build system
	Непрерывная интеграция
	Предзагрузка
	Усиление безопасности компилятора
	Повторяемая сборка
	Переменные подстановки
	Пакет библиотеки
	Multiarch
	Split of a Debian binary package
	Сценарии и примеры разделения пакета
	Multiarch library path
	Multiarch header file path
	Multiarch *.pc file path
	Библиотека символов
	Library package name
	Смена библиотек
	Безопасная binNMU-загрузка
	Отладочная информация
	-dbgsym package
	debconf

	Packaging with git
	Salsa repository
	Salsa account setup
	Salsa CI service
	Branch names
	Patch unapplied Git repository
	Patch applied Git repository
	Note on gbp
	Note on dgit
	Patch by «gbp-pq» approach
	Manage patch queue with gbp-pq
	gbp import-dscs --debsnap
	Note on dgit-maint-debrebase workflow
	Quasi-native Debian packaging

	Полезные советы
	Сборка с использованием кодировки UTF-8
	Преобразование в кодировку UTF-8
	Hints for Debugging

	Tool usages
	debdiff
	dget
	mk-origtargz
	origtargz
	git deborig
	dpkg-source -b
	dpkg-source -x
	debc
	piuparts
	bts

	Дополнительные примеры
	Выборочное применение шаблонов
	Без Makefile (командная оболочка, интерфейс командной оболочки)
	Makefile (командная оболочка, интерфейс командной оболочки)
	pyproject.toml (Python3, CLI)
	Makefile (командная оболочка, графический интерфейс пользователя)
	pyproject.toml (Python3, GUI)
	Makefile (single-binary package)
	Makefile.in + configure (single-binary package)
	Autotools (single-binary package)
	CMake (single-binary package)
	Autotools (multi-binary package)
	CMake (multi-binary package)
	Интернационализация
	Детали

	Страница руководства debmake(1)
	НАЗВАНИЕ
	СИНТАКСИС
	ОПИСАНИЕ
	необязательные аргументы:

	ПРИМЕРЫ
	ВСПОМОГАТЕЛЬНЫЕ ПАКЕТЫ
	ПРЕДОСТЕРЕЖЕНИЯ
	ОТЛАДКА
	АВТОР
	ЛИЦЕНЗИЯ
	СМОТРИТЕ ТАКЖЕ

	debmake options
	Shortcut options (-a, -i)
	debmake -b
	debmake -cc
	Snapshot upstream tarball (-d, -t)
	debmake -j
	debmake -k
	debmake -P
	debmake -T
	debmake -x

